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Active, voltage-dependent conductances in neuronal dendrites trans-
form the relationship between synaptic input and neuronal output1,2. 
The resulting enrichment of the integration capabilities of single neu-
rons has long been suggested as being exploited for computations  
relevant to behavior3,4. However, the details of how specific active 
dendritic mechanisms are involved in behavioral computations have 
proved to be elusive. Recent work has provided evidence that the 
active properties of dendrites are engaged in somatosensory and 
visual cortical neurons during sensory processing5–8. Moreover, 
dendritic nonlinearities also appear to be activated during behav-
ioral tasks involving spatial navigation9–11. While these studies have 
provided important correlative evidence that dendritic mechanisms 
are engaged under various circumstances, they do not provide a quan-
titative link for explaining how specific biophysical mechanisms can 
contribute to behavioral computations.

Grid cells in medial entorhinal cortex (MEC) represent a particu-
larly attractive model system for linking cellular and circuit mecha-
nisms to a behaviorally relevant computation. Grid cells exhibit a 
striking spatial code, with firing fields that span the environment of a 
navigating animal in a periodic hexagonal pattern, and have thus been 
proposed as representing a neural mechanism for path integration12. 
Moreover, there exist several well-developed single-cell and network 
models of grid cell generation13–19, providing a rigorous quantitative 
framework for understanding how particular biophysical mechanisms 
relate to the computation of spatial location. Layer 2 of MEC (MECII) 
contains the highest proportion of grid cells20,21, and stellate cells, 
which form most of the MECII principal cell population22, are likely 
grid cell candidates17,18,23,24. In stellate cells, the correlation between 

somatically recorded synaptic responses and the dorsoventral gradi-
ent in grid spacing in MECII25,26 has suggested that intrinsic voltage- 
gated conductances may be important for generating grid cell firing. 
However, very little is known about whether the dendrites of stellate 
cells are electrically excitable, and thus their contribution to grid cell 
firing is unclear.

Here we have combined in vitro two-photon glutamate uncaging 
and in vivo patch-clamp recording with modeling to assess the role 
of active dendrites in grid cell firing. We show that stellate cells have 
active dendrites that perform supralinear input–output transforma-
tions in vitro. We also identify electrophysiological signatures con-
sistent with active dendritic integration in vivo, including membrane 
potential-dependent boosting of excitatory postsynaptic potentials 
(EPSPs) and plateau potentials. We place our results in the context of 
single-cell and network models of grid cell firing and use modeling 
to show that active dendrites can promote the robustness of the grid 
cell rate code while sharpening the precision of the temporal phase 
precession code. Thus, dendrites of principal cells in MECII are highly 
excitable, and these active dendritic properties can enhance the accu-
racy and stability of the spatial map represented by grid cell firing.

RESULTS
Supralinear integration in dendrites of MECII principal neurons
To assess how grid cells integrate synaptic inputs in single dendritic 
branches, we performed two-photon glutamate uncaging on dendritic 
spines of principal neurons in MECII (Fig. 1a). Activation of indi-
vidual spines in MECII stellate cells produced glutamate uncaging-
evoked EPSPs comparable to physiological synaptic responses (Fig. 1b 
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Understanding how active dendrites are exploited for behaviorally relevant computations is a fundamental challenge in neuroscience.  
Grid cells in medial entorhinal cortex are an attractive model system for addressing this question, as the computation they perform 
is clear: they convert synaptic inputs into spatially modulated, periodic firing. Whether active dendrites contribute to the generation 
of the dual temporal and rate codes characteristic of grid cell output is unknown. We show that dendrites of medial entorhinal cortex 
neurons are highly excitable and exhibit a supralinear input–output function in vitro, while in vivo recordings reveal membrane 
potential signatures consistent with recruitment of active dendritic conductances. By incorporating these nonlinear dynamics into 
grid cell models, we show that they can sharpen the precision of the temporal code and enhance the robustness of the rate code, 
thereby supporting a stable, accurate representation of space under varying environmental conditions. Our results suggest that 
active dendrites may therefore constitute a key cellular mechanism for ensuring reliable spatial navigation.

©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

http://dx.doi.org/10.1038/nn.4582
http://orcid.org/0000-0002-5328-9704
http://orcid.org/0000-0002-2673-8957
http://www.nature.com/natureneuroscience/


nature neurOSCIenCe	 VOLUME 20 | NUMBER 8 | AUGUST 2017 1115

a r t I C l e S

and Supplementary Fig. 1). Activating increasing numbers of spines 
along a single dendrite or on two nearby dendrites evoked responses 
that were larger than the arithmetic sum of the corresponding indi-
vidual responses (64 ± 8% supralinearity for intervals of ≤1 ms; n = 34 
dendritic branches; Fig. 1b,c and Supplementary Fig. 2). Since recent 
data suggest that some MECII pyramidal cells may also display grid 
cell firing24,27, we also carried out experiments on MECII pyramidal 
cells and obtained similar results (Fig. 1d and Supplementary Fig. 3).  
The degree of supralinearity in stellate cells did not significantly scale 
with distance from the soma (Supplementary Fig. 4) but was reduced 
to 10 ± 9% (n = 6) when the intervals between spine activations were 
extended to 8 ms, demonstrating that it depends on millisecond tim-
ing of the inputs (Fig. 1d).

Dendritic spikes and supralinearity depend on Nav and 
NMDAR channels
Activation of some dendritic branches produced clear signatures of 
dendritic spikes detected at the soma28,29. Dendritic spikes with fast 
and slow time-courses and distinct thresholds were observed (Fig. 2a),  
and application of pharmacological blockers revealed that these 
were generated by activation of voltage-gated sodium (Nav) chan-
nels and NMDA receptors (NMDARs), respectively (Fig. 2b and 
Supplementary Fig. 5). The NMDA receptor antagonist 2-amino-5-
phosphonopentanoic acid (AP5) alone could also abolish fast spikes, 
indicating that NMDAR current was required to reach the threshold 
for Nav channel activation and that NMDARs and Nav channels thus 
acted cooperatively. This is also supported by the fact that a substan-
tial fraction of fast spikes (43%) were followed by a slow spike, and 
many slow spikes (38%) were preceded by a fast spike. Both NMDAR 
channels, and to a lesser degree Nav channels, contributed to supra-
linearity (Fig. 2c).

Testing the contribution of nonlinear dendritic integration 
under in vivo conditions
To probe the contribution of dendritic nonlinearities in MECII stel-
late cells during more physiological in vivo-like conditions, we took 
advantage of the fact that the voltage profile underlying grid cell firing 
in vivo is represented by a ramp-like membrane potential depolariza-
tion17,18. We approximated this ramp-like depolarization in vitro by 
injecting a scaled current waveform that we had obtained from volt-
age-clamp recordings using the in vivo ramp as a voltage command 
(Online Methods). This allowed us to examine how in vivo-like mem-
brane potential dynamics influenced dendritic integration of synaptic 
inputs. Both supralinear summation and dendritic spikes were more 
pronounced when uncaging was performed during the in vivo-like 
ramps (Supplementary Fig. 6), suggesting that these active events 
were likely to be engaged in vivo when an animal entered a grid firing 
field. Taken together, these results reveal that the dendrites of grid 
cells are highly excitable, exhibiting markedly nonlinear input–output 
functions in a manner that could transform the integration of synaptic 
inputs during navigational behavior.

Signatures of active dendrites in stellate cell recordings in vivo
To determine whether active dendritic integration occurs in grid cells 
in vivo, we searched for the signatures of supralinear dendritic integra-
tion, as identified in our slice recordings, in patch-clamp recordings 
from MECII neurons of mice navigating in virtual reality18 (Fig. 3). 
By examining the differentiated membrane potential traces (dV/dt), 
we identified large peaks that were below the voltage threshold for 
action potentials and that were preferentially clustered around the 
peak of theta membrane potential oscillations (Fig. 3a), at a similar 

theta phase as action potentials during grid field crossings17,18. These 
dV/dt peaks in vivo were comparable in amplitude to dV/dt peaks of 
glutamate uncaging-evoked EPSPs exhibiting dendritic spikes in vitro 
(Fig. 2a and Supplementary Fig. 7). The in vivo dV/dt peaks were 
correlated with large depolarizations in Vm with amplitudes of up to 
~6 mV (Fig. 3b), consistent with them being EPSPs that were boosted 
by activation of voltage-dependent conductances.

To probe the mechanisms underlying these dV/dt signatures in 
more detail, we used our experimental results to constrain a detailed 
compartmental model of MECII stellate cells that captures their meas-
ured passive, active and synaptic properties (Supplementary Fig. 8). 
Simulating grid cell firing in a model incorporating dendritic Nav and 
NMDAR channels reproduced the experimentally observed dV/dt sig-
natures, including the correlation of dV/dt peak amplitudes with Vm 
(Fig. 3c). When dendritic Nav and NMDAR channels were removed 
from the model, these signatures were abolished (Fig. 3c). In our in vivo  
experimental data, the fastest-rising events occurred within the 90° 
phase-bin preceding the peak of theta membrane potential oscilla-
tions (MPOs; Fig. 3d,f). This phase-bin also contained a larger frac-
tion of particularly fast events with maximal rates of rise resembling 
or exceeding the maximal rates of rise of fast dendritic spikes that 
we observed during our somatic in vitro recordings (Fig. 3f). These 
observations could also be faithfully reproduced by the model gener-
ating dendritic Na+ spikes in the presence of dendritic Nav channels 
but not in their absence (Fig. 3e,g).
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Figure 1 Supralinear synaptic integration in MEC principal neurons.  
(a) Two-photon image of a MECII stellate cell filled with Alexa Fluor 594 via 
somatic patch-clamp recording. Inset shows the selected dendrite and the 
uncaging locations (red spots). (b) Somatic voltage responses to increasing 
number of stimulated synapses (indicated in the inset in a). Top traces 
show arithmetic sums expected from the individual responses; bottom 
traces show recorded responses (15 spines, 0.6-ms stimulation interval). 
(c) The amplitudes of somatically recorded glutamate uncaging-evoked 
EPSPs (gluEPSPs) were markedly larger than the arithmetic sum of the 
individual responses (dashed lines indicate unity). Top, single experiment 
(as in a and b); bottom, summary of 34 experiments. Gray lines represent 
individual experiments; the black line connects binned averages across 
experiments (red). Error bars represent s.e.m. (d) Nonlinearity depends on 
the interval between uncaging events (*P < 0.05). No significant difference 
(ns) in the degree of supralinearity was found between stellate cells 
(SC) and pyramidal cells (PC) of MECII (at ≤1-ms stimulation intervals). 
Nonlinearity in stellate cells at different stimulation intervals: 8 ms, 10 ± 
9% (n = 6); 4 ms, 56 ± 17% (n = 11); ≤1 ms, 64 ± 8% (n = 34); one-way 
ANOVA for different stimulation intervals, P = 0.03, F = 3.71; nonlinearity 
in pyramidal cells at stimulation intervals ≤1 ms: 49 ± 12% (n = 9; Mann-
Whitney U test, P = 0.42 compared to stellate cells).
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To further quantify the contribution of nonlinear dendritic con-
ductances to grid cell firing, we compared NMDAR activation and 
dendritic input currents in detailed compartmental models of stellate 
cells with active or passive dendrites (Supplementary Fig. 9). These 
simulations showed that during grid cell firing, with Vm trajectories 
representative of our in vivo recordings, NMDARs were substantially 
recruited (Supplementary Fig. 9a) and dendritic input currents were 
nonlinearly amplified by active, voltage-dependent conductances 
(Supplementary Fig. 9b). Furthermore, the membrane potential 
distributions in putative dendritic recordings in vivo covered the non-
linear range of the NMDAR open-probability curve, implying that 
NMDARs were nonlinearly engaged in vivo (Supplementary Fig. 10).  
In summary, we observed clear signatures of active dendritic integra-
tion in the membrane potential of MECII principal neurons during 
navigational behavior in vivo.

Plateau potentials during putative dendritic in vivo stellate 
cell recordings
Next, we looked for direct evidence for activation of regenerative 
events in stellate cell dendrites in vivo. Excitable dendrites have been 
shown to produce long-lasting regenerative plateau potentials in 
several cell types, such as neocortical pyramidal cells30 and hippoc-
ampal CA1 pyramidal cells in vitro31 and in vivo11,32. We identified 
similar distinctive signatures of excitable dendrites in putative den-
dritic patch-clamp recordings from MEC neurons in vivo (Fig. 4 and 
Supplementary Fig. 11). Dendritic recordings were identified by a 
range of characteristic features6,33 such as slower action potential rise 
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Figure 2 Supralinear integration and dendritic spikes depend on  
voltage-gated sodium (Nav) and NMDA receptor channels. (a) Left: 
examples of fast (orange arrows) and slow (blue arrows) dendritic spikes. 
Right: plots of dV/dt against number of uncaging locations. Fast dendritic 
spikes cause a step-like increase in dV/dt (arrows). (b) Top: fast dendritic 
spikes are present in 21 ± 7% (n = 34) of all recordings and abolished 
when Nav channels are blocked with tetrodotoxin (TTX) and/or when 
NMDARs are blocked with AP5. Bottom: slow dendritic spikes are present 
in 26 ± 7% (n = 34) of all recordings, still present in TTX (29 ± 17%;  
n = 7; Fisher’s exact test, P = 1.0; ns, not significant) and abolished 
when NMDARs are blocked with AP5. Uncaging interval ≤ 1 ms. 
Individual data points (not indicated in the figure) are either zeroes (no 
spikes were observed in a recording) or ones (spikes were observed in a 
recording). Bar graphs indicate the percentage of recordings containing 
spikes; error bars represent s.d., estimated by Monte Carlo methods.  
(c) Application of TTX and AP5 reduces or abolishes supralinear dendritic 
integration (*P < 0.05). Gray dots represent individual recordings. 
Control: 64 ± 8% (n = 34); TTX: 37 ± 11% (n = 7; Mann-Whitney U test, 
P = 0.09 compared to control); AP5: 10 ± 19% (n = 3; Mann-Whitney  
U test, P = 0.03 compared to control). TTX+AP5: 11 ± 3% (n = 3;  
Mann-Whitney U test, P = 0.01 compared to control). One-way ANOVA,  
P = 0.03, F = 3.40.
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Figure 3 Engagement of active dendritic conductances in MECII principal 
neurons in vivo. (a) Left: membrane potential (Vm; top), theta membrane 
potential oscillations (theta MPOs; middle, green trace) and differentiated 
membrane potential (dV/dt; bottom) during a firing field crossing in a 
MECII neuron (experimental data from Schmidt-Hieber and Häusser18). 
Gray dashed vertical lines indicate peaks (0° phase) of theta MPOs. 
Right: membrane potentials and differentiated membrane potentials at 
higher magnification for two episodes corresponding to the horizontal 
bars at the bottom of the traces on the left. Filled circles on dV/dt traces 
indicate peaks in dV/dt that are below (black) or above (red) the mean 
+ 1.5 s.d. of all peaks within 90° bins of theta MPO phases. (b) Plot of 
peaks in membrane potential against corresponding peaks in dV/dt for 
the recording shown in a. Colors as in a. Green line represents a linear 
regression (r = 0.49; P < 10−5; n = 8,265 peaks). (c) As in b, for a detailed 
compartmental model of a MECII stellate cell with active (left; r = 0.45;  
P < 10−5; n = 14,411 peaks) or passive dendrites (right; r = 0.31;  
P < 10−5; n = 25,228 peaks). See Online Methods for model details.  
(d) Plot of peaks in dV/dt against the phase of theta MPOs for the recording 
shown in a. Colors as in a. Yellow filled circles represent binned averages. 
(e) As in d, for compartmental model data with active (left) or passive 
dendrites (right) as in c. (f) Analysis of n = 6 stellate cell recordings (data 
from Schmidt-Hieber & Häusser18). Peaks in dV/dt (top) and fraction of 
dV/dt peaks exceeding mean + 1.5 s.d. of all peaks within 90° bins of theta 
MPOs (bottom) are plotted against theta MPO phase. Black lines  
and symbols, average data. Error bars represent s.e.m. Colored lines  
and symbols show individual recordings. (g) As in f, for compartmental 
model data with active (black) or with passive dendrites (blue).
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times and higher input resistances (Supplementary Fig. 12). Distinct, 
long-lasting plateau depolarizations could be observed following 
action potentials in both putative dendritic and somatic recordings 
(Fig. 4a,b). These plateau potentials occurred either spontaneously 
(Fig. 4a,b and Supplementary Fig. 13) or could be evoked by cur-
rent injection in putative dendritic recordings (Fig. 4b). We found 
that both the frequency (the percentage of action potentials followed 
by plateau potentials) and the duration of evoked plateau potentials 
were well-correlated with parameters that are also indicative of den-
dritic recordings (Fig. 4c), suggesting that they could be preferentially 
evoked in distal dendrites. While the frequency of evoked plateau 
potentials per action potential was more than an order of magnitude 
higher in putative dendritic than in somatic recordings from stellate 
cells in vivo (14.7 ± 7.2% of action potentials followed by plateau 
potentials in putative dendrites, n = 6, versus 0.4 ± 0.4% in soma, n = 6;  
P < 0.05), spontaneous plateaus occurred at comparable frequencies 
(1.9 ± 1.9% in putative dendrites, n = 6, versus 1.0 ± 1.0% in soma, 
n = 6; P = 0.22; Fig. 4d). Distinct plateau potentials could be evoked 

by current injections in 4 of 6 putative dendritic recordings but only 
in 1 of 6 putative somatic recordings (Fig. 4d). The results of these 
in vivo recordings indicate that plateau potentials could be evoked 
by strong, localized inputs to dendrites of grid cells and were read-
ily detectable at their site of origin in the dendrite. However, pla-
teau potentials were rarer and less prominent in somatic recordings 
and appeared to be substantially attenuated as they propagated to 
the soma from their origin in the dendritic tree. We further probed 
the biophysical mechanisms underlying dendritic plateau poten-
tials using our active compartmental model of stellate cells. Strong, 
localized synaptic inputs to a dendrite of the stellate cell model 
could produce plateau potentials near the site of synaptic input that 
were similar to those observed in our putative dendritic recordings  
(Supplementary Fig. 14a). These dendritic plateau potentials were 
strongly attenuated as they propagated to other dendrites and to the 
soma, making them readily detectable only close to the dendritic 
location of the active synaptic inputs (Supplementary Fig. 14a). To 
produce a plateau potential detectable at the soma, a large number of 
simultaneously activated strong synaptic inputs had to be distributed 
across the dendritic tree (Supplementary Fig. 14b). The rare occur-
rence of strong, synchronous activation of many synapses, along with 
the pronounced attenuation of plateau potentials along the dendritic 
tree, can therefore explain why they were only rarely observed as 
spontaneously occurring events. Thus, despite their low rate, the pres-
ence of dendritic plateau potentials in vivo provides strong evidence 
that the active dendritic conductances underlying nonlinear integra-
tion in vitro can be recruited by synaptic input in vivo.

Slow supralinear integration promotes the robustness  
of the grid cell rate code
To provide a quantitative framework for understanding the contri-
bution of active dendrites to generating the grid cell rate code, we 
used a rate-based continuous attractor network (CAN) model. Given  
that NMDAR activation underpins the various types of dendritic  
nonlinearities we discovered in grid cells, we implemented NMDARs 
as a slow, cooperative, supralinear integration mechanism in an exist-
ing CAN model of grid cell firing13, which allowed us to efficiently 
explore a large range of parameters and noise amplitudes (Fig. 5 and 
Supplementary Fig. 9). Adding NMDARs to the CAN model strongly 
enhanced grid cell firing in the presence of noise, measured by a 
range of metrics (Fig. 5a–h). Across a wide range of noise amplitudes, 
NMDARs reduced network drift and improved the network’s velocity 
response, resulting in higher gridness scores (Fig. 5i,j). Simulations 
in which we independently incorporated either supralinearity or 
a slow time-constant indicated that both mechanisms must act in 
concert to improve network performance (Supplementary Fig. 15). 
The robustness of these findings was confirmed by a spiking attrac-
tor network model consisting of integrate-and-fire neurons34, which 
also produces the best velocity response and the highest gridness 
scores when both mechanisms are engaged (Supplementary Fig. 16).  
Using actual animal trajectories to drive the rate-based model, we 
found that an NMDAR decay time constant of ~50 ms produced a 
minimum in velocity error and a maximum in gridness (Fig. 5j). 
This optimum is remarkably consistent with the NMDAR decay time 
constant we measured experimentally in stellate cells (46 ± 5 ms, n = 4;  
Supplementary Fig. 17). Simulations using an artificially slowed 
animal trajectory (Fig. 5j) indicate that the optimum depends on a 
realistic animal velocity driving the network response. Thus, NMDAR 
kinetics optimized for animal velocity can produce marked robustness 
to noise in a CAN model of grid cell firing.
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Figure 4 Plateau potentials suggest that active dendritic conductances 
are engaged in vivo. (a) Example of a putative somatic recording from 
a MEC neuron in vivo. Plateau potentials (arrow) occur spontaneously 
(left; top trace, animal speed; bottom trace, membrane potential) but not 
during current injections (right; top trace, membrane potential; bottom 
trace, injected current). (b) Example of a putative dendritic recording 
from a MEC neuron in vivo. Plateau potentials (arrows) occur both 
spontaneously (left; top trace, animal speed; bottom trace, membrane 
potential) and upon current injections (right; top traces, membrane 
potential; bottom trace, injected current). Inset (top right) shows an 
enlarged view of an evoked plateau potential. (c) Frequency and duration 
of plateau potentials correlate with parameters that are characteristic of 
dendritic recordings. Plateau frequencies per action potential (top) and 
plateau durations (bottom) are significantly correlated with rise times of 
action potentials (left) and input resistance (right). Black lines represent 
linear regressions (n = 58 recordings). (d) Summary bar graphs of evoked 
and spontaneous plateau frequencies per action potential in (left) 
putative somatic (evoked, 0.4 ± 0.4%; spontaneous, 1.0 ± 1.0%, n = 6) 
and (right) dendritic recordings (evoked, 14.7 ± 7.2%; spontaneous, 1.9 
± 1.9%, n = 6). Filled gray circles represent individual recordings. Error 
bars represent s.e.m.
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Supralinear integration sharpens the precision of phase 
precession
Finally, we investigated how the active dendritic conductances we 
revealed in stellate cells can contribute to the temporal phase preces-
sion code of grid cell firing35. To determine the precise spike tim-
ing produced by oscillatory synaptic inputs, we drove our detailed 
compartmental MECII stellate cell model (Supplementary Fig. 8) 
by realistic synaptic input patterns derived from a hybrid CAN and 
oscillatory interference model based on in vivo recordings from grid 
cells18 (Fig. 6). While the model only produced weak phase preces-
sion in the absence of dendritic Nav channels (Fig. 6a–c), phase pre-
cession was strikingly precise when Nav channels were present in 
the dendrites (Fig. 6d–f). While the fast supralinearity provided by 
Nav channels was sufficient to sharpen phase precession even in the 
absence of distinct isolated regenerative events, the effect could fur-
ther be enhanced if the model cell produced full-blown fast dendritic 
spikes (data not shown). Further analysis showed that dendritic Nav 
channels can sharpen phase precession by shortening the suprathresh-
old part of membrane potential oscillations, enabling precisely timed 
spikes across the full extent of a grid firing field (Supplementary 

Fig. 18). In agreement with this analysis, adjusting the width of grid 
fields by increasing excitatory drive in the model without dendritic 
Nav channels failed to improve phase precession, as more mistimed 
spikes were produced in the center of the grid field (Supplementary 
Fig. 19). Thus, our combined modeling results show that active den-
dritic conductances can both stabilize the rate code and sharpen the 
temporal code of grid cell firing.

DISCUSSION
We provide evidence that the dendrites of MECII principal cells are 
electrically excitable and exhibit a range of nonlinear dynamics. Our 
results reveal that the biophysical origins of dendritic nonlinearities in 
these cells—dendritic Nav and NMDAR channels—may underpin the 
two key aspects of the grid cell code. Dendritic Nav channels restrict 
the time window for action potential generation in an oscillatory 
interference model of phase precession, thereby improving the pre-
cision of the temporal code. NMDARs in turn improve the robustness 
of the grid attractor in a rate-based model of grid cell firing. Together, 
our results provide strong evidence that active dendrites make a 
critical contribution to a key behaviorally relevant computation  
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pseudorandom number generator seeds. 
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in the mammalian brain. Our simulations also provide a general 
framework for understanding how active dendritic computations 
can stabilize attractor networks.

Active dendrites in MECII principal cells
Although principal cells in MECII, which form a large part of the 
grid cell population, have been shown to exhibit a rich variety of 
nonlinear excitability in somatic recordings19,25,36, there has been 
no direct information available about the contribution of dendritic 
excitability to the active properties of grid cells. Our in vitro experi-
ments reveal that the dendrites of both types of principal neurons in 
MECII, stellate and pyramidal cells, exhibited nonlinear input–output  
functions and could trigger dendritic spikes mediated by both volt-
age-gated sodium channels and NMDA receptor channels. Moreover, 
they demonstrate that these nonlinearities could be further enhanced 
by in vivo-like membrane potential trajectories that underpin grid 
cell firing.

Our in vivo experiments strengthen and complement our in vitro 
results and provide multiple signatures of nonlinear dendritic inte-
gration in MEC neurons during spatial navigation. First, EPSPs were 
boosted at the peak of the MPOs when the neuron was depolarized, 
consistent with our in vitro experiments, as well as with predictions 
from a model with active dendrites (Fig. 3). Second, comparing a 
stellate cell model with nonlinear or linear dendritic conductances, 
we found that dendritic nonlinearities were robustly activated dur-
ing simulations of grid cell firing (Supplementary Fig. 9). Third, we 
observed nonlinear plateau potentials in putative dendritic whole-cell 
recordings from MECII neurons. We found that plateau potentials 
frequently occurred with dendritic but not somatic current injections, 

whereas spontaneous plateaus occurred with similar probability in 
somatic and dendritic recordings, indicating that the plateaus were 
of dendritic origin. Plateau potentials have been observed as a signa-
ture of dendritic excitability in other cell types30, particularly in CA1 
pyramidal cells11,32, where dendritic plateau potentials can positively 
modulate existing or induce new place fields11. Together, our mod-
eling and experimental data suggest that the dendrites of grid cells 
are electrically highly excitable and that the resulting nonlinearities 
can be engaged in vivo during grid cell firing in mice performing a 
spatial navigation task.

How do active dendrites improve grid cell firing?
Our modeling results show that active dendrites can enhance both the 
rate and temporal code of grid cell firing. First, we show that incor-
porating a nonlinear NMDAR conductance, with characteristics 
matching those underpinning the nonlinearities in our in vitro experi-
ments, in a CAN model of grid cell firing can reduce network drift 
and improve the network’s velocity response, resulting in improved 
gridness. Our simulations show that this enhancement of gridness 
arises from a synergistic interaction between two cardinal features 
of the nonlinear NMDAR conductance. First, NMDAR activation 
depends nonlinearly on the amplitude of the synaptic inputs that a 
neuron receives, increasing the gain of the neural transfer function 
preferentially in active neurons receiving strong spatial inputs37. 
Second, the slow decay time constant of NMDARs allows active 
neurons to average signals over a longer time (see also refs. 38–40), 
reducing the contribution of noise38 and stabilizing the attractor.  
Notably, the stabilizing effect of NMDARs depends on the noise ampli-
tude (Fig. 5i). Thus, acute blockade of NMDARs in grid cells should 
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most strongly disrupt grid firing in novel environments, where spatial 
inputs are expected to be imprecise41.

Our detailed compartmental model indicates that active dendrites 
also enhance phase precession, the signature of the temporal code of 
grid cell firing. Our simulations show that the mechanism underlying 
this effect operates by curtailing the suprathreshold part of the mem-
brane potential trajectory during membrane potential oscillations. 
This ensures that spikes can occur only within a narrow time window, 
sharpening the precision of spike timing and thus the robustness of 
phase precession across the entire grid firing field. Notably, the effect 
of active dendrites on phase precession does not require the activation 
of full-blown dendritic spikes: even a model exhibiting subthreshold 
recruitment of nonlinearities demonstrates enhanced phase preces-
sion. Moreover, the model can reproduce the experimentally observed 
phase precession of both spikes and theta MPOs18,19. The simplicity 
and robustness of this mechanism suggests that it may generalize to 
other phase precession models relying on coincidence of oscillations, 
such as those that have been proposed for CA1 pyramidal cells42–44.

Our findings suggest that dendritic nonlinearities are key elements 
in the creation of a stable grid code and are therefore critical for navi-
gation. This complements recent work proposing that dendritic non-
linear events may contribute to behaviorally relevant computations 
in single neurons5–8. In hippocampal place cells, in vivo two-photon 
imaging has revealed dendritic Ca2+ transients that are correlated 
with their place field properties9, and intracellular recordings from 
place cells suggest that dendritic nonlinearities may contribute to 
defining the spatial tuning of a neuron10,11. Together with our in vivo 
results indicating that dendritic nonlinearities may also be engaged 
in MECII stellate cells during virtual navigation (Figs. 3 and 4), this 
suggests that active dendrites may provide a general mechanism for 
strengthening spatial representations at the single-cell level. Notably, 
the stabilizing role that we describe for active dendrites in a CAN may 
also generalize to other circuits that display attractor dynamics, both 
in the hippocampus45,46 and in other brain areas47.

Why use active dendrites to enhance circuit computations?
Active dendrites offer several key advantages over alternative mecha-
nisms—such as tuning somatic and axonal excitability, or excita-
tion–inhibition balance—for improving the signal-to-noise ratio 
during grid cell firing. The nonlinear voltage-dependence of NMDAR 
activation exhibits exquisite sensitivity, being engaged already by a 
small number of synapses due to the high dendritic input impedance 
(Supplementary Fig. 20)48. At the same time, since dendritic syn-
apses are electrotonically remote from the axonal site of action poten-
tial generation, nonlinear integration can proceed independently of 
somatic spiking49,50. Moreover, by regulating the density of dendritic 
Nav channels and NMDARs, the threshold for supralinear integration 
can be widely adjusted over a large range of synaptic input frequencies 
to maximize the signal-to-noise ratio for grid cell firing. In contrast, 
changes in somatic and axonal excitability have only weak effects on 
the shape of the input–output transfer function of MECII principal 
neurons36. Furthermore, dendritic nonlinearities provide versatility, 
permitting a range of flexible transfer functions depending on the 
combination of dendritic branches that are activated (Supplementary  
Fig. 2). This allows grid cells to gate relevant inputs and suppress irrel-
evant inputs (similarly to what has been suggested for place cells10). 
Finally, active dendrites may also provide a mechanism for shaping cir-
cuit wiring during development: early in the assembly of the entorhinal 
circuit, synaptic inputs that contact a nonlinear dendritic branch may 
be strengthened by engaging these nonlinearities and in turn define 
the grid properties of a neuron.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Slice preparation. Acute horizontal brain slices were prepared from 26–30-d-
old C57/BL6 male and female mice. Animals were briefly anesthetized with iso-
flurane before decapitation. All procedures were approved by the local Animal 
Welfare and Ethical Review Board and performed under license from the UK 
Home Office in accordance with the Animals (Scientific Procedures) Act 1986.  
Slicing was performed in ice-cold sucrose solution, containing (in mM): NaCl 
87, sucrose 75, glucose 25, NaHCO3 25, MgCl2 7, KCl 2.5, NaH2PO4 1.25 and 
CaCl2 0.5. For a period of 30 min immediately after slicing, slices were stored in 
preheated (32 °C) artificial cerebrospinal fluid (ACSF) with low Ca2+ and high 
Mg2+ concentrations, containing (in mM): NaCl 125, glucose 25, NaHCO3 26, 
MgCl2 7, KCl 2.5, NaH2PO4 1.25 and CaCl2 0.5. Slices were subsequently stored at 
room temperature (20–25 °C). Experiments were performed in ACSF, containing 
(in mM): NaCl 125, glucose 25, NaHCO3 26, MgCl2 1, KCl 2.5, NaH2PO4 1.25 and 
CaCl2 2 at a temperature of 32–34 °C. After some recordings (Supplementary 
Fig. 3), the slices were fixed in 4% paraformaldehyde and immunohistochemi-
cal staining was performed using rabbit anti-calbindin (ab11426, Abcam) as the 
primary antibody and donkey F(ab’)2 anti-rabbit IgG (Alexa Fluor 488, ab150069, 
Abcam) as the secondary antibody51,52.

electrophysiology and pharmacology. Somatic whole-cell patch-clamp record-
ings were obtained from stellate and pyramidal cells in layer 2 of medial entorhi-
nal cortex. Stellate and pyramidal cells were identified by their somatodendritic 
morphology and their characteristic electrophysiological properties19,25,26,36,53–56. 
Current-clamp recordings were acquired with a MultiClamp 700B amplifier at a 
sampling rate of 50 kHz using custom software written in Matlab. Patch pipettes of 
5-MΩ resistance were filled with internal solution containing (in mM): KMeSO4 
140, HEPES 10, KCl 7.4, MgCl2 0.3, EGTA 0.1, NaGTP 0.3, Na2ATP 3 and sodium 
phosphocreatine 1. Alexa Fluor 594 (50 µM) was added to this solution to visualize 
cell morphology. Series resistance of the recordings was usually less than 30 MΩ.  
In some recordings, 50 µM d-AP5 and 0.5 µM TTX were added to the regular 
ACSF solution to block NMDA receptors and voltage-gated sodium channels, 
respectively. All extracellular solutions were equilibrated with carbogen (95% 
O2 / 5% CO2) and had a pH of 7.3. Miniature EPSPs (mEPSPs; Supplementary  
Fig. 1) were measured in the presence of 0.5 µM TTX in the recording solution. 
The detection threshold for mEPSPs was defined as dV/dt ≥ 1 mV/ms.

To produce membrane potential ramps in vitro that mimicked membrane 
potential dynamics in vivo (Supplementary Fig. 6), we first applied the mean  
in vivo membrane potential waveform that we had previously recorded from 
stellate cells during firing field crossings18 as a voltage clamp command in n = 
5 stellate cells in vitro. The resulting clamp-current waveform was then aver-
aged across recordings and injected as a current-clamp command to produce an  
in vivo-like voltage ramp. For voltage-clamp recordings (Supplementary  
Fig. 17), pipettes were filled with internal solution containing (in mM): CsMeSO4 
135, HEPES 10, EGTA 10, NaGTP 0.3, Na2ATP 2 and MgATP 2. Series resistance 
was less than 15 MΩ. EPSCs were evoked by extracellular stimulation in layer I 
of MEC while holding MECII stellate cells at a potential of +40 mV. NMDAR-
mediated EPSCs were isolated by blocking GABAA receptors with SR95531  
(20 µM) and AMPA receptors with NBQX (10 µM).

two-photon imaging and uncaging. Simultaneous two-photon imaging and 
two-photon glutamate uncaging was performed with two Ti:sapphire lasers tuned 
to 810 nm and 720–730 nm for imaging and uncaging, respectively. To visualize 
dendrites and dendritic spines, cells were loaded with a fluorescent dye (50 µM 
Alexa Fluor 594) added to the pipette solution. Healthy dendrites close to the 
surface of the slice were selected for uncaging. MNI-caged-L-glutamate (24 mM, 
Tocris) was dissolved in a solution containing (in mM): NaCl 125, glucose 25, 
KCl 2.5, HEPES 10, CaCl2 2 and MgCl2 1 and applied locally via a glass pipette 
(tip diameter ~10 µm). Multiple spines were selected in a randomized manner 
within a maximal distance of ~50 µm on a single dendritic branch. gluEPSPs were 
first evoked by stimulating each spine individually at 300-ms intervals. We then 
stimulated an increasing number of synapses at short time intervals (0.6–8 ms, as 
indicated), with a 10-s pause between each trial. To estimate the expected linear 
summation of gluEPSPs, we first shifted individual membrane potential traces 
according to the corresponding experimental stimulation interval (0.6–8 ms for 
each trace) before computing the sum. Uncaging laser exposure time was 0.5 ms.  
The laser power was adjusted to produce gluEPSPs that were comparable to sEPSPs  

recorded in the same cell (Supplementary Fig. 1). Uncaging timing and loca-
tion were controlled by custom software written in Matlab. Experiments were 
terminated if photodamage to the dendrite was observed (for example, swell-
ing of the dendrite) or depolarization of the membrane potential was detected. 
Recordings from neurons with photodamaged dendrites were excluded from 
analysis. Recordings were also excluded if the slice exhibited physical drift due to 
slice swelling or inconsistency of perfusion. This was detected either by imaging 
or by sudden large changes (usually decreases) in EPSP amplitude.

data analysis. Data analysis was performed with custom code written in 
Python57. Nonlinearity, D, of each experiment was quantified by 
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where Mi is the amplitude of the measured EPSP, Li is the amplitude of the EPSP 
constructed by linear summation of single synapse EPSPs, and n is the maximal 
number of synapses activated. Slow dendritic spikes were detected if the non-
linearity of the EPSP integral was 33% larger than the nonlinearity of the EPSP 
amplitude. A fast dendritic spike was defined as a step-like increase (>50%) in 
a plot of maximal dV/dt against the number of uncaging locations (Fig. 2 and 
Supplementary Fig. 3).

To examine whether signatures of active dendritic integration can be found in 
grid cells in vivo, we analyzed in vivo patch-clamp recordings from MECII neu-
rons18. The full membrane potential (Vm) recording duration from n = 6 putative 
grid cells was used for this analysis. Peaks were identified in differentiated Vm 
traces (dV/dt) by detecting local maxima that exceeded 0.1 mV/ms within time 
windows of 200 µs. The analysis was restricted to subthreshold Vm by excluding 
parts of traces where dV/dt exceeded 5% of the maximal rate of rise of action 
potentials of each recording. Local Vm peaks corresponding to these dV/dt peaks 
were detected in high-pass-filtered Vm traces (fc = 10 Hz) within 5 ms following 
each dV/dt peak (Fig. 3b,c). dV/dt peaks were binned according to the phase of 
theta membrane potential oscillations (theta MPOs) during which they occurred. 
Theta MPOs were obtained by bandpass-filtering Vm between 5 and 10 Hz;  
0° corresponds to the peak of theta MPOs. For each theta MPO bin with a width 
of 45° (as indicated), mean and s.d. of all dV/dt peaks were computed for each 
recording (Fig. 3d–g). Moreover, for each theta MPO bin with a width of 90° (as 
indicated), dV/dt peaks that exceeded the mean of all dV/dt peaks within a given 
bin by 1.5 s.d. were computed for each recording (Fig. 3f,g). These particularly 
fast peaks are indicated by red symbols in Figure 3. According to these criteria, 
the lowest threshold for these fast peaks was typically a maximal rate of rise 
of ~0.4 mV/ms (Fig. 3d). Thus, these fast in vivo events were characterized by 
maximal rates of rise resembling or exceeding the maximal rates of rise of fast 
dendritic spikes recorded in vitro (typically ~0.4 mV/ms; Fig. 2a).

We analyzed plateau potentials across both somatic18 and putative dendritic 
in vivo patch-clamp recordings from MECII neurons. Plateau potentials were 
defined as sustained depolarizations following action potentials with a full-width-
at-half-maximal amplitude exceeding 15 ms. These criteria were chosen to iden-
tify plateau potentials that closely resembled published examples (for example, 
Bittner et al.11). Action potentials were detected when dV/dt exceeded 30 mV/ms. 
We did not observe any obvious isolated plateau potentials without a preceding 
action potential in our data set. We analyzed a total of n = 58 recordings that 
produced trains of action potentials in response to depolarizing 1-s current injec-
tions. Recordings were categorized into putative dendritic and putative somatic 
recordings according to input resistance (Rin) and 20–80% rise time of action 
potentials (t20–80)6 (putative somatic: t20–80 < 0.2 ms and Rin < 80 MΩ; putative 
dendritic: t20–80 > 0.3 ms and Rin > 120 MΩ). The frequency of plateau potentials 
did not depend on recording parameters such as resting membrane potential 
or seal resistance (Supplementary Fig. 11), indicating that recording quality 
did not affect their occurrence. To measure action potential kinetics (Fig. 4 and 
Supplementary Fig. 12), we used the first action potential that was evoked by 
the lowest suprathreshold sustained current injection.

Data are presented as mean ± s.e.m., unless stated otherwise. Error bars for 
dendritic spike proportions represent the s.d. of bootstrap analyses of the experi-
mental data set (1,000 repeats). Statistical significance of continuous data was 
assessed using two-sided Mann-Whitney U tests and Wilcoxon signed-rank tests 
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for unpaired and paired data, respectively. Statistical significance of dendritic 
spike proportions was assessed using Fisher’s exact test. Analyses of variance 
(ANOVA) were performed when more than two groups were tested. Differences 
were considered statistically significant when P < 0.05. No correction for multiple 
comparisons was applied58. No statistical methods were used to predetermine 
sample sizes, but our sample sizes are similar to those reported in previous pub-
lications11,17,18. Data collection and analysis were not performed blind to the 
conditions of the experiments.

compartmental modeling. Studying phase precession required us to model 
the precise timing of action potentials produced by oscillatory synaptic inputs. 
To achieve realistic predictions of membrane potential trajectories, we therefore 
decided to use a detailed compartmental model implemented in NEURON59 
(Figs. 3 and 6 and Supplementary Figs. 8 and 20). We used a reconstructed mor-
phology of a mouse MEC stellate cell25 and HCN channel gating kinetics based on 
experimental data from stellate cells60. Voltage-gated potassium (Kv) and sodium 
(Nav) channel kinetics were adopted from a CA1 pyramidal cell model61. Active 
conductance densities, axial resistivity (Ri), specific membrane resistance (Rm) 
and capacitance (Cm) were fitted to reproduce the experimentally determined 
mean f–I relationship, input resistance, sag ratio, sag time-constant, membrane 
time-constant, resting membrane potential and afterhyperpolarization amplitude 
using a genetic algorithm (NSGAII)62–64 (Supplementary table 1).

Subthreshold synaptic input–output curves (Supplementary Fig. 8b) were 
produced by first finding all sites on the dendritic tree that were located 175 µm  
from the soma. We then performed simulations that closely followed our experi-
mental protocol (Fig. 1): at each site, we distributed 20 synaptic conductances 
within 25 µm. We then activated individual synaptic conductance changes in 
isolation and computed the linear sums of the individual responses. Next, we 
stimulated an increasing number of synaptic conductance changes at 1-ms inter-
vals and plotted the amplitudes of the measured responses against the ampli-
tudes of the linear sums. This procedure was repeated for each site to yield a set 
of input–output curves. The analysis of simulated data was identical to that of 
experimental data.

To determine the effect of dendritic Nav channels on phase precession (Fig. 6 
and Supplementary Fig. 19), we used a modeling and analysis strategy similar 
to one described previously18. In brief, we converted the synaptic inputs of rate-
based neurons in a CAN model (see below) into discrete events driving synaptic 
conductance changes in our compartmental stellate cell model. Feedforward 
excitation was provided by six directional velocity-controlled oscillating (VCO) 
inputs that were only active when the current running direction matched the 
VCO’s preferred direction ± 90° (ref. 65).

Rate-based modeling (Fig. 5 and Supplementary Fig. 15). Previous work has 
suggested that the mechanisms underlying the rate code of grid cell firing are 
best explained by a continuous attractor network (CAN) model17,18,66. We imple-
mented a CAN model in a sheet of 128 × 128 neurons with periodic boundaries 
building on a previous implementation (courtesy of Y. Burak and I. Fiete13). 
This rate-based model allowed us to efficiently test the effect of a large range of 
parameters on network performance, which is essential for exploring the effects 
of a large range of noise amplitudes. The dynamics of rate-based neurons was 
defined by 
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where si represents the firing rate of neuron i, Vi represents the membrane  
potential of neuron i, τ = 10 ms is the integration time constant of the neural 
response, kNMDA = 0.4 (unless indicated otherwise) is the relative strength of 
NMDARs, pi is the fraction of open NMDARs in neuron i (equations (8) and (9)), 
Ii is inhibitory recurrent input to neuron i, Bi is excitatory feedforward input to 
neuron i, Wij is the synaptic weight from neuron j to neuron i, and ξi is colored 

(2)(2)

(3)(3)

(4)(4)

synaptic noise (equations (10)–(12)). By subtracting 0.5 from pi, mean network 
firing rates were kept approximately constant across simulations. For a threshold-
linear implementation of the model without NMDARs, we set kNMDA = 0. The 
gain of the neural transfer function, kV, was set to 0.88 (unless indicated other-
wise), which minimized drift and velocity error for kNMDA = 0. This strategy was 
chosen to ensure that reductions of drift and velocity error by NMDARs could not 
be explained by a simple linear gain change. The implementation of NMDARs as 
a multiplicative term is consistent with predictions of NMDAR recruitment in a 
compartmental model (Supplementary Fig. 9). Bi was defined by 

ˆ ˆ ( )e e vB Ai B i
= + ⋅( )1 5a f

where êfi
 is the unit vector pointing along neuron i’s preferred direction φi (one 

of W, N, S or E), v is the animal velocity vector in m s–1, and α was set to 0.0825. 
The recurrent weight matrix was purely inhibitory in our implementation: 

W W lij i j i
= − −( )0 6x x ê ( )f with

W A e eW
x x

0
2 2

7x( ) = −( )− −g b ( )

where xi is neuron i’s location in the neural sheet and ranges from (−64, −64)  
to (64, 64). In our implementation, we used l = 2, γ = 1.02β, β = 3λ–2 and λ = 13.  
AB = 10 and AW = 10 are scaling factors that were chosen to compensate for 
the ‘notau’ option in the original implementation. As in Burak and Fiete13,  
we computed the animal velocity vector v from an experimentally determined 
rat trajectory12.

It is currently unknown how spatially modulated excitatory and inhibitory 
inputs are distributed on the dendritic tree of grid cells. To implement a model 
that applies to a large range of potential synaptic input configurations, we there-
fore used a generalized approach in which we subject the sum of all synaptic 
inputs to a single function, which can take a nonlinear form.

The dynamics of NMDAR open probability pi in neuron i was computed  
as follows: 
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where the steady-state open probability, p(V), was assumed to be a sigmoid  
function of membrane potential V with center cNMDA = 0.1 and slope factor  
mNMDA = 0.2, yielding a neural transfer function that qualitatively matched the 
experimentally determined dendritic input–output curves. Unless indicated 
otherwise, τNMDA was set to 50 ms, in agreement with our experimental data 
(Supplementary Fig. 17).

Synaptic noise, ξi, was implemented as an Ornstein-Uhlenbeck process using 
an exact update rule for an integration time step, h67,68: 

x x xi i i= −, , ( )exc inh with 10

x x x x t
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where ξi,exc and ξi,inh are excitatory and inhibitory synaptic noise, respectively; 
ξexc,0 and ξinh,0 are average synaptic noise; τexc and τinh are synaptic time 
constants; G1 and G2 are random numbers drawn from a normal distribution 
with mean and unit standard deviation. Aexc and Ainh are amplitude coefficients 
given by 
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where Dexc and Dinh are noise diffusion coefficients. Excitatory and inhibitory 
noise were assumed to be symmetric in our simulations, with τexc = τinh = 2 ms. 
Noise diffusion coefficients and average synaptic noise were set as high as possible 
without disrupting the periodic activity bumps in the CAN when the original 
simulation parameters from Burak and Fiete13 were used (ξexc,0 = ξinh,0 = 1.2,  
Dexc = Dinh = 0.04, yielding a ratio similar to ξ0/D, as in Destexhe et al.67).

Integrate-and-fire neurons (Supplementary Fig. 16). An implementation of a 
CAN model using integrate-and-fire neurons was adopted from Pastoll et al.34. 
Topology and connectivity of the model were adopted from the original imple-
mentation: the network consisted of 68 × 58 excitatory and 34 × 30 inhibitory 
neurons interconnected in an ‘E-surround’ configuration34. Constant excitatory 
input currents to the excitatory neurons in the original model (Iext_e_const and 
Iext_e_theta) were replaced by mixed AMPAR/NMDAR-type synapses driven by 
Poisson spike trains at 1 kHz. The dynamics of the synapses was defined by 
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where gAMPA and gNMDA are the AMPAR and NMDAR conductances,  
αNMDA = 0.5 defines NMDAR saturation, τNMDA,rise = 2 ms and τNMDA,decay = 
100 ms are the rise and decay time constants of NMDAR, and x is the activation 
gating variable of NMDARs. For each presynaptic spike occurring at time t1, the 
synapse activity was updated from its previous state at time t0 according to the 
following equations: 

x t x t wp V1 0 18( ) = ( ) + ( )∞ and ( )

g t g t wAMPA AMPA1 0 19( ) = ( ) + ( )

where w = 1 is the synaptic weight and p(V) is the steady-state open probability 
of the NMDAR (equation (9)). Total synaptic conductance was computed as 
gAMPA + kNMDAgNMDA. The maximal total conductance was set to 2.3 nS. A ver-
sion of an AMPAR/NMDAR-type synapse without Mg2+ block was implemented 
by setting p(V) = 1 in equation (18).

Spatial rate maps of model neurons were discretized into 1-cm × 1-cm bins. 
No smoothing of the data was performed. To quantify spatial periodicity (‘grid-
ness’), we first calculated the spatial autocorrelation for rate maps of each model 
neuron21. We then selected a centered ring-shaped region of interest from the 
autocorrelogram that included peaks closest to the center but excluded the cen-
tral peak. We next rotated this ring in steps of 1° and at each step computed 
the correlation coefficient of the rotated with the original ring. We then deter-
mined maximal correlation values at 60° and 120° rotation (rmax,60 and rmax,120) 

(15)(15)

(16)(16)

(17)(17)

(18)(18)

(19)(19)

and minimal correlation values at 30°, 90° and 150° rotation (rmin,30, rmin,90 and 
rmin,150). Gridness was then determined as min(rmax,60, rmax,120) – max(rmin,30, 
rmin,90, rmin,150)21. Mean gridness values were computed for ten randomly selected 
model neurons.

code and data availability. Data analysis and simulation code are available on 
GitHub (https://github.com/neurodroid/SH2017; access available upon request).  
The data that support the findings of this study are available from the correspond-
ing authors upon reasonable request.

A Supplementary methods checklist is available.
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