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Highlights
Escape behaviours are not only simple
stimulus-reactions but are under cog-
nitive control, allowing the study of
processes such as decision-making
and action selection in tractable organ-
isms in ethological settings.

Successful escape relies on integrating
multiple external and internal variables,
such as for computing flight trajec-
tories towards shelter, and implement-
ing trade-offs by choosing between
actions that satisfy competing
motivations.
When faced with potential predators, animals instinctively decide whether there
is a threat they should escape from, and also when, how, and where to take
evasive action. While escape is often viewed in classical ethology as an action
that is released upon presentation of specific stimuli, successful and adaptive
escape behaviour relies on integrating information from sensory systems,
stored knowledge, and internal states. From a neuroscience perspective,
escape is an incredibly rich model that provides opportunities for investigating
processes such as perceptual and value-based decision-making, or action
selection, in an ethological setting. We review recent research from laboratory
and field studies that explore, at the behavioural and mechanistic levels, how
elements from multiple information streams are integrated to generate flexible
escape behaviour.
Some neural mechanisms of escape
are innate and conserved across spe-
cies, but are subject to control and
modification by multiple systems,
including the neocortex, which allow
experience to be flexibly incorporated
into escape behaviour.

New tools to quantify behaviour while
recording neural activity enable analy-
sis of ethologically-relevant behaviours
in complex environments, and will
advance our understanding of the
neural basis of natural behaviours.
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A Wide Range of Complexity in Escape Behaviours
Escape (see Glossary) is an instinctive defensive behaviour that has evolved to avoid harm
from predators and other threats in the environment. Animals that fail to escape from imminent
threats will suffer reduced fitness, catastrophically in the case of death, but also in the case of
injury, for example owing to reduced ability to forage for food or weakening in social status [1].
Evolution has produced many different expressions of escape behaviour that reflect aspects
such as biomechanics, the nature of the threat, local ecology or individual history, and which
range from simple to extraordinarily complex [2]. At one end of the spectrum, animals might
escape a fast-approaching predator by moving away with reflex-like actions, such as the ‘jack-
knife’ tail flip in crayfish and the C-start escape in fish [3,4]. At the other end, successfully
escaping from threats can require cognitive processes, including using memory and deciding
between alternative options. For example, animals escaping in complex environments need to
use knowledge of refuge locations and escape routes, and prey escaping from a pursuing pack
of predators must dynamically compute escape strategies and trajectories [5,6]. In addition,
one of the most important components of escape behaviour are economic trade-offs because
escaping from a foraging patch incurs a potential loss of resources that escape decisions
should take into account for optimizing fitness in the long term [7,8]. The computation of escape
behaviour therefore integrates information from various streams, which creates the flexibility
necessary for animals to survive in dynamic environments, and produce escapes that minimize
reaction time in response to imminent threats, or that maximize success by considering as
much information as possible. This information can be extracted at the time of the encounter (e.
g., the nature of the threat and the current state of the environment), derive from prior
experience (e.g., expectation about the outcome of the escape action), and also arise from
internal signals of the state of the animal, such as hunger or anxiety.

The ability to robustly trigger escape in a stimulus-dependent manner, together with the
potential for investigating it in conditions that require different levels of cognitive complexity,
make escape behaviour a powerful ethological model for systems neuroscience and mecha-
nistic studies of cognition. Classic ethological field work has revealed many principles of escape
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Glossary
C-start: a type of very fast escape
made by fish and amphibians that
begins with the body forming a
characteristic C-shaped bend.
Defensive behaviour: behavioural
actions that aim to minimize the
chances of being harmed. When
faced with predatory threats, animals
can engage in different defensive
behaviours such as escape, freezing,
attack, alarm vocalizations, or
thanatosis (‘playing dead’). Which
behaviours they execute, and in
which sequence, depends on
properties specific to the predated
species and its predator, as well as
on its current environment, internal
state, and previous experience.
Escape: the act of avoiding harm by
increasing the distance of an agent
from the source of threat, such as a
predator, and possibly finding refuge
in a safe location.
Escape vigour: the intensity of the
escape action, which can be inferred
from the kinematics of the escape,
such as the speed, frequency, or
amplitude of movement.
Instinctive (behaviour): a class of
behaviours ‘in which the motor
pattern is variable but with an end
result that is predictable from
acknowledgment of the species,
without knowing the history of the
individual animal’ [161]. These
behaviours can be driven by internal
or external triggers, independently of
learning.
Innately threatening stimuli:
sensory stimuli that are perceived as
threatening without requiring prior
exposure or a learning process for
acquiring a negative value.
Kairomone: an interspecific
chemical signal that benefits the
receiver rather than the emitter.
Looming (stimulus): a stimulus that
represents an approaching object.
Visual looming stimuli are most often
a 2D representation of an object on
a collision course. The perceived
threat level or imminence can be
experimentally varied by changing
the time of collision, size, velocity, or
contrast of the visual stimulus.
at the behavioural level [5], whereas laboratory studies aiming to understand the neurophysi-
ology of escape have traditionally focused on fast stimulus-escape reactions, such as jumping
escapes in locusts and flies [9,10]. There is thus a gap between our understanding of the
biological mechanisms of escape and the complex behaviours displayed by animals escaping
in natural environments. However, recent advances in behaviour monitoring and recording
techniques in freely moving animals promise to bridge this gap, and open the way for
understanding how neural circuits implement the cognitive processes that control escape
behaviour. Here we review evidence that escape is a flexible behaviour under cognitive control,
as well as some of the currently known underlying neural mechanisms (see further references in
the supplemental information online). We consider three time points: threat detection, escape
initiation, and escape execution (Figure 1). In addition to structuring escape into separate
control points, this division generalizes to classes of problems that the brain must solve when
computing any behaviour, namely classifying sensory information, selecting, and then execut-
ing flexible actions (Figure 2), and further underscores the power of using escape behaviour as a
model for systems neuroscience.

Threat Detection
The first step in the computation of escape behaviour is to evaluate sensory information to
identify whether a threat is present. This is a classification operation where sensory stimuli are
sorted into threatening or not-threatening, and includes a perceptual component (is the
stimulus there?) and a value component (is it threatening or not?). Animals must detect,
identify, and evaluate threats based on sensory features such as shape, size, speed, or smell.
For most animal species there are stimuli that innately carry negative valence, which is essential
for surviving and escaping from predators without needing to rely on prior exposure to learn that
they are threatening. This can be implemented through the evolution of dedicated channels
with specialised sensory detectors, which activate defensive circuits and lead to stereotyped
behaviour. For example, the rodent olfactory system has a circuit specialised for the detection
of chemical substances emitted by other species, kairomones, where the receptors are
located in the vomeronasal organ and connected to the hypothalamic defensive system via the
amygdala [11]. Similarly, a subset of cells in the visual system increase their firing rate in
response to dark expanding stimuli, which signal approaching objects on a collision course and
elicit defensive responses without prior experience [12], even in human infants [13]. These cells
can be found across the animal kingdom [14–17], probably reflecting the strong selective
pressure for a collision-avoidance system. In vertebrate species, the optic tectum (OT) and its
mammalian homologue, the superior colliculus (SC), are conserved regions in the midbrain for
detecting and integrating threats [18–20]. While the role in defensive behaviour is perhaps
the least well understood for the SC in mammals, neural activity recordings have revealed
looming-sensitive cells [16,17,19,21–23], and activity manipulations can both impair or elicit
defensive behaviours [19,23–26]. For innately threatening sensory stimuli that are simple and
unimodal, the microcircuitry and computational mechanisms of threat integration in the OT/SC
are starting to be uncovered [19,27–30], and place these midbrain circuits at the core of threat
processing.

Previous Predator Encounters Modify Threat Perception and Escape
Although reflex-like stimulus–response couplings are important for survival, the evaluation of
threats should be flexible enough to adapt to dynamic contingencies, and be modulated by
expectations arising from experience and prior beliefs. For example, prey should adjust their
behaviour based on the frequency and outcome of past encounters with predators, and adapt
to the current level of predatory risk. In theoretical terms this is equivalent to a prior – at high
predation risk, the threshold for detecting or reacting to threats should be lowered, and raised
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Figure 1. A Conceptual Timeline of Events during Escape Behaviour. Illustrations of a mouse (top) and fish (bottom) at different time points during an escape
response away from a predator and towards a refuge (from left to right). Prior knowledge (0): learning experiences, such as previous encounters with predators,
influence escape behaviour. This prior knowledge is updated constantly throughout the life of the animal (5) and can modulate each part of the escape sequence.
Threat detection (1): the animal detects a sensory stimulus and must evaluate whether it is a potential predatory threat. This can be done through specialised innate
detection pathways or learning processes, and includes behaviours that facilitate threat assessment, such as freezing. Escape initiation (2): once a stimulus is
considered to be threatening, the decision and timing of escape depend on trade-offs such as the presence of nearby desirable resources, and variables such as the
availability and distance to shelter. Escape execution (3): in environments that are spatially simple, animals accelerate and flee away from the threat, and often in a
straight trajectory towards shelter. Escape is however a dynamic process that can take into account properties of the threat and of the local surroundings. Escape
termination (4): the escape action terminates when the animal has reached safety, either by increasing the distance from the threat source or by arriving at the shelter
location.
for low predation risk. Such flexible adaptation has been demonstrated in laboratory and field
studies, where animals quickly learn to suppress escape responses if they are repeatedly
presented with innately threatening stimuli but no adverse outcome occurs, presumably to
minimise costs associated with unnecessary escape responses [31]. In animal studies, the
most common way to determine whether a stimulus is threatening is to observe behaviour, and
therefore it is sometimes not possible to distinguish whether adaptations take place at the
stimulus classification stage or at the point of action selection (see below). The process of
habituation to a threatening stimulus can be strongly context-dependent [32] and stimulus-
specific [33,34], whereas the time course of its acquisition and persistence is variable across
stimuli, contexts, and species [34,35]. This high level of flexibility suggests that there is no single
underlying mechanism for escape habituation, but rather, that it is composed of multiple distinct
processes operating at different levels in the same animal [36–38]. Although the neural
mechanisms of escape-behaviour adaptations are mostly unknown, they have been suggested
to arise from changes in inhibitory or neuromodulatory tone in crustaceans [37,39]. It will be
interesting to consider whether behavioural habituation to innate threats is purely non-asso-
ciative or whether it can also be shaped by associative processes, similar to inhibitory learning
336 Trends in Cognitive Sciences, April 2019, Vol. 23, No. 4



Figure 2. Flexibility of Escape Execution in Different Species. Escape directionality depends on the presence and location of shelter (left panels). (Top)
When an animal has knowledge that a refuge is inaccessible, absent, or too far away, the predominant response to threat switches from escape to freezing behaviour.
(Bottom) The presence of a suitable refuge in the environment guides precise escape trajectories to its location. If a refuge becomes unavailable and the animal finds a
new one, flight paths are modified accordingly very rapidly. Escape trajectories are threat-dependent (middle panels). (Top) The type and location of a predator
influences escape trajectory. A frog directs its escape away from a terrestrial predator such as a snake, but flees towards an aerial predator such as a bat to undercut
their flight path [117]. (Bottom) Animals including birds, deer, fish, and frogs flee directly away from threatening stimuli, which may function to maximize the distance
between predator and prey. The same animals can also escape at a 130–90� angle, for example, to facilitate visual monitoring of predators during escape in response to
less threatening stimuli, or as a less predictable, evasive manoeuvre in response to a fast predatory strike [118]. The physical and social environment modulates
escape (right panels). (Top) Flight trajectories take into account the presence of obstacles in the environment. For example, fish that usually flee away from an
approaching predator may escape towards it if an obstacle occludes the optimal escape path. (Bottom) Solitary fish can initiate escapes at various onset angles,
whereas schooling fish escape in straight and uniform trajectories owing to the spatial constraints imposed by the shoal.
during conditioned fear extinction [40]. In mammals, threat-detection circuit elements such as
the SC receive both top-down cortical as well as strong neuromodulatory input [21,41–43], and
are therefore well-positioned to implement escape habituation through cognitive control.

Across species, experience with threats can also lead to heightened sensitivity to future stimuli.
Many animals respond to repeated approaches from predatory threats by increasing the
probability of escape and escape vigour in subsequent encounters [44,45], decreasing
escape reaction times [46], and changing tactics [47]. These changes in escape performance
are thought, at least in part, to be under cognitive control [39,48], and appear to adapt escape
behaviour to higher levels of predation risk [49]. The detection of predatory stimuli in one
sensory modality can also cause sensitization in others, as evidenced by the increase in
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behavioural and olfactory neuron sensitivity observed in moths after brief exposure to bat calls
[50]. Classically, such generalization of sensitization is related to a global state of increased
arousal and stress [51,52]. In lizards, for example, sensitisation is correlated to increased
corticosterone levels, which regulate stress responses, and blocking corticosteroid elevation
renders lizards unable to adapt their reaction in response to repeated predator exposure [53]. In
mice, stress exposure has been shown not only to decrease the response latency to looming
visual stimuli [54] but also to increase the duration of freezing [55]. It will be interesting to
understand which mechanisms of escape sensitisation are specifically cognitive, such as faster
categorization of predatory threats through learning, and which arise from global mechanisms
such as stress.

Habituation and sensitisation are two opposite adaptation strategies, and whether an individual
responds to repeated threat encounters with one or the other is likely to depend on factors such
as the initial perceived threat-level of the stimulus and the frequency of encounter, and in fact
both can occur in the same animal on different timescales [56,57].

Associative Learning Expands the Ability To Detect Threats
In addition to updating innate processes for classifying sensory stimuli as threats, surviving
encounters with predators should also lead to learning new associations between features of
the sensory space that might predict future encounters [8]. This has been extensively investi-
gated in the laboratory, where associative learning can be easily triggered by pairing a noxious
stimulus such as a foot shock with a neutral stimulus. These Pavlovian threat conditioning
protocols usually trigger freezing, and have been one of the main paradigms for studies of fear
learning mechanisms [58–60]. In more naturalistic scenarios, relying on the experience of pain
to learn new associations would be a dangerous strategy, and animals are also capable of
performing such associations by computing temporal and contextual coincidence between
innately threatening stimuli and neutral cues. For example, cyprinid fish detect an innate danger
signal released from injured conspecifics, which they can associate with sensory cues of novel
predators [61]. Interestingly, prey can generalize their acquired predator recognition to similar
but novel species, and continuously update their recognition templates [62,63]. Animals
also learn to avoid locations associated with predation: ants are able to form a generalized
memory of their predators’ pit traps after escaping a single time [64], and mice show
risk assessment and escape behaviours when exploring an arena in which they previously
encountered threats [19,65].

In mammals, the circuits for encoding predator cues and predator context-specific memories
are not as well understood as those that process simple aversive stimuli such as foot shocks.
Overall, they seem to involve the same core associative-learning circuit elements of the
basolateral amygdala, hippocampus, and distributed cortical regions, but with the additional
integration of threat-instructive signals from networks such as the medial hypothalamic defen-
sive system [66]. It will be particularly interesting to understand how learned associations feed
into innate threat-detection and escape decision centres, such as the midbrain, to inform
escape and other defensive behaviours.

Vigilance and Active Risk Assessment Enhance Threat Detection
In addition to modulation from past experience, threat detection is also affected by the current
state of the environment, and foraging animals often display threat-assessment behaviours [67]
that are flexibly adapted to the current environmental conditions, to improve risk analysis. For
example, birds that engage in sentinel behaviour to protect foragers from predators, such as
pied babblers, start epochs of guarding sooner and for longer periods in higher grass (reduced
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visibility) and in high wind (reduced audibility), during which they adopt a raised position to scan
for danger and communicate alarm signals [68]. Wallabies are similarly more vigilant at higher
wind speeds [69], indicating that decreased availability of auditory, visual, and olfactory cues is
actively compensated for by an increase of attention. This allocation of resources to threat
detection, such as attention and vigilance, emphasises that threat detection is an active
process. In fact, immediately upon detecting a threat, most animals interrupt ongoing behav-
iours and freeze – a behaviour that aids risk assessment by allowing animals to update
information about the local environment, for example to compute the likelihood of threat
presence, and to estimate and evaluate the threat risk in comparison to the benefits of not
fleeing (e.g., proximity to a food source) [70–72].

It is interesting to consider that key areas for threat detection and expression of defensive
behaviours, such as the SC and amygdala, are also involved in the control of spatial attention
and saliency maps [73–76]. This may suggest that threat detection is fundamentally a process
similar to others that link salient events in sensory space with actions – for threat and escape
this link may be innate, and modified through experience.

Escape Initiation
After a sensory stimulus has been detected and valued as being a threat that requires
immediate action, the escape circuit should in principle be engaged as soon as possible,
and evolution has shaped neural circuits to ensure that this can be achieved. The Mauthner cell
is perhaps the best-studied example – it receives direct synaptic input from the cranial nerve VIII
carrying information from hair cells, and commands the initiation of fast C-start escape
responses by projecting across the midline to activate contralateral motoneurons, allowing
millisecond-long latencies between threat detection and escape start [3]. In mice, the peri-
aqueductal gray (PAG) circuit that controls escape initiation [19,24–26,77] receives monosyn-
aptic input from the SC [19], which itself receives direct retinal input [78], thereby providing a
short pathway between threat detection centres and escape initiation. However, escape
initiation is often probabilistic and modulated by many variables. It has long been recognised
that animals do not necessarily flee immediately once predators are detected, a point stressed
by Ydenberg and Dill [7], who disputed much of the previous literature that equated escape
initiation with threat detection. There are several processes that can account for the variable
time period between detecting a threat and starting to escape, and which also control whether
escape happens at all.

Decision Processes and Economics Control the Onset of Escape
Initiating escape can be the result of a decision-making process that requires integrating
dynamic evidence about the threat, and decisions take time. Therefore, the escape reaction
time should in part reflect the time over which decision-making processes occur, such as
evidence accumulation. It is important to note, however, that even in this case reaction time
does not necessarily reflect exclusively the time it takes to decide to escape: animals may have
made a commitment to escape, but not initiated the action, such as during ambush encounters
with a striking predator, where an animal waits to take evasive action until it is too late for the
predator to adjust its trajectory. In addition, economic models of escape, supported by
experimental evidence from field studies, suggest that animals escape only when the costs
of remaining (e.g., the level of risk of injury or predation) are higher than the costs of fleeing (e.g.,
loss of foraging or mating opportunities) [5,7]. An important variable in this computation is the
internal state of the animal because it dictates the value of actions that compete with escape.
Behavioural studies have shown a tight link between animals’ internal state � such as hunger or
the receptive period of the sexual cycle – and their escape strategies [79,80]. Complementary
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Box 1. Hunger’s Hold on Escape

Hunger has a powerful and well demonstrated effect on behavioural choices and learning [119]. For example, animals
show a preference for food items that they have previously encountered in a hunger state over items that they ate while
sated, even if the energetic value of both food items is the same [120]. Defensive behaviours are no exception to the
control of behavioural decisions by hunger, which has been shown to directly modulate escape in several species.
Crayfish, for example, reduce the frequency of tail-flip escapes in response to overhead sweeping visual stimuli when
they are fasted [79]. In larval zebrafish, recent work has uncovered neural mechanisms that can explain how hunger
decreases escape probability via changes in the visual processing of approaching stimuli in the optic tectum. In these
animals, food deprivation inhibits the hypothalamic–pituitary–interrenal axis and increases the activity of serotonergic
neurons in the raphe: this serotonergic input to the tectum then recruits cells that are tuned to small stimuli, causing an
over-representation of food-like objects, which has been suggested to bias the choice to approach over escape
[121,122]. Mice also display more risk-seeking behaviours when hungry, including spending more time in threatening
environments [81]. Recent laboratory studies have dissected the neural circuits for hunger in rodents [123,124], and
have shed light on the nodes of these circuits that link hunger states to defensive behaviours. Notably, activation of a
single, molecularly-defined population of inhibitory neurons in the hypothalamic arcuate nucleus, AGRP+ neurons, can
recapitulate the effects of hunger on defence [81,82,119], providing an exciting entry point for understanding
behavioural choices in face of competing motivations, and the neural basis of instinctive value-based decisions.
studies on laboratory animals have begun to produce a detailed understanding of the circuits
and mechanisms by which internal states and motivations control defensive behaviours (Box 1
for details on hunger) [54,81,82]. Current efforts to map motivational states onto distinct
neuronal pathways and cell types will enable us to determine how different behavioural
motivations compete, and shed light on how they act mechanistically to influence defensive
decision-making.

Overall, the decision to initiate escape is not simply a threat but detection process, it is a
computation that can integrate multiple external and internal variables, and currently we know
very little about how the brain implements this process.

Environment and Threat Properties Control Escape Selection
Escape is only one of several possible actions in the defensive repertoire of most animals, and,
for each encounter with a threat, the defensive action with the highest likelihood of success
should in principle be chosen. The optimal choice depends on multiple factors about both the
environment and the properties of the threat, which should be taken into account when
selecting escape or alternative actions. A canonical defence alternative to escape is freezing
behaviour, which has the main goal of avoiding detection [67]. One of the most intriguing
aspects of the selection between escape and freezing is that it is determined by knowledge of
whether or not there is a shelter in the environment. This has been observed in lizards [83] and
several rodent species, which can learn about shelter existence in seconds and very quickly
update their defensive strategy [84,85] (Figure 2, top left panel). In addition, in various animals
including squirrels [86], the prey–predator distance that determines escape onset depends on
the distance to refuge. This suggests that the escape initiation network is under the control of
neural circuits that encode a spatial representation of the environment, which can gate escape
initiation (but also control escape trajectories, see below). In rodents, the midbrain defence
network receives direct synaptic input from many cortical areas that could convey this type of
spatial information [42,87], but it is unknown which areas are relevant and how such control
might be implemented.

Another factor known to control escape selection is the presence and value of a desirable
resource. For example, when crayfish are close to a food source, they prefer to freeze in
response to fast-expanding looming stimuli instead of escaping with a tail-flip [88]. In this
situation freezing is advantageous because a tail-flip moves the animal away from the food
340 Trends in Cognitive Sciences, April 2019, Vol. 23, No. 4



source and delays resumption of foraging. Another factor that can also carry information that
dictates defensive action selection is the threat stimulus itself. Escape initiation from looming
stimuli depends on the approaching object surpassing a critical visual angle or speed
[20,27,89,90], and stimuli that slowly sweep overhead, mimicking a searching bird of prey,
bias the choice of strategy towards freezing [70]. In flies, a recent study has shown that walking
speed controls the selection between freezing and fleeing, suggesting that the ongoing
behavioural state of the animal can bias the choice of defensive behaviour [91].

In contrast to invertebrates, the neural implementation of defensive action selection in mam-
mals is poorly understood. For learned threats in laboratory animals exposed to fear condi-
tioning protocols, the central amygdala (CeA) is a critical node in controlling freezing behaviour
through projections to the ventrolateral PAG (vlPAG) [58], and recent evidence suggests that a
competing population of CeA neurons is involved in selecting defence strategies such as
escape or jumping, possibly through projections to the dorsal PAG (dPAG) [59]. For responses
to innate threats, which do not necessarily rely on amygdala circuits [19,92,93], a similar
winner-takes-all mechanism for selecting between escape or freezing could be implemented
directly in the PAG, for example through mutual inhibition between the dPAG and vlPAG [59]. In
agreement with its crucial role in threat processing, activation of the medial SC (mSC) can evoke
both escape and freezing behaviours [94], but it is not known how mSC activity is converted
into one action or the other. Interestingly, a mSC projection to the lateral posterior nucleus of the
thalamus appears to be important for mSC-evoked freezing responses [95], and it is possible
that there are distinct threat-responding mSC cell populations that project predominantly to
either the escape or freezing circuits.

Escape Action
Once the escape action has been selected, a key consideration is where to escape to. One of
the simplest actions is to increase the distance from the threat by moving away from it. Escape
responses in fish again provide an excellent example of such evasive action, where C-start
escapes bend the fish with the head pointing away from the stimulus, followed by a second
phase of swimming away. However, the success of the escape action will increase if it is
sufficiently flexible to adapt to the properties of the threat, such as different predator strategies
(Box 2), and to the properties of the environment, such as the location of refuges and potential
hazards.

Properties of the Threat Determine Escape Patterns
The most basic information to extract from the threat is its type and location, which can dictate
the direction of escape not only for simple behaviours but also for more complex actions
(Figure 2, top middle panel). For example, flies engage in flexible visually-controlled postural
adjustments approximately 200 ms before take-off to direct escape initiation away from a
looming stimulus [96], and during flight they perform fast banked turns away from the stimulus
that dynamically adapt to the position of the fly in relation to the stimulus [97]. Interestingly,
some species introduce deliberate variability in both the initial direction of escape and the
escape trajectory when moving away from a threat (Figure 2, bottom middle panel). For
example, cockroaches have an unpredictable initial escape direction which, although directed
away from the source of threat, falls within one of a few stereotypical directions, between 90�

and 180� from the stimulus [98]. Other species make continuously unpredictable movements
during escape [99] instead of optimising speed [100], which can increase survival, particularly
when escaping from ballistic capture. Such unpredictability can be achieved by gait transitions,
and by changes in speed and direction, as seen in the bipedal escape responses of jerboas, a
hopping desert rodent [101].
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Box 2. The Predator’s Point of View

For the predator, successful predation includes at least five timepoints: detection, classification, approach, subjugation,
and consumption [125]. Correspondingly, prey are equipped with defence mechanisms that target termination of the
interaction with the predator at each, or multiple, of these time points. Prey defensive behaviour therefore occurs within a
framework set by the predator, and we believe that the predator’s perspective should be considered in studies of prey
defensive decisions for two main reasons:

(i) As prey behavioural responses are guided by the predator's current and expected actions, understanding the
predator’s behaviour can help to infer and interpret the goals, strategies, order, and kinematics of prey behaviour
[126,127]. For example, analysis of aerial pursuit trajectories, incorporating data taken from predator-mounted video
cameras, has demonstrated how prey can terminate pursuit by using flanking turns that briefly withdraw the prey from
the visual or acoustic field of view of the predator [128,129]. Defensive strategies can be highly complex in naturalistic
predator–prey encounters. This is apparent in birds and mammals that display defensive signalling behaviours, such as
communicating precise predator-related information to conspecifics, or deterring attack and pursuit by communicating
their knowledge of a predator’s ambush location to the predator directly [130,131]. We should therefore appreciate that
assays lacking interacting predators risk underestimating the natural behavioural repertoire of the prey, or misinterpret-
ing the functions of particular behaviours.

(ii) Many prey act as predators themselves, and evidence suggests that the computations for detection, sensorimotor
transformations, and movements that underlie predation and evasion are sufficiently similar that both can be carried out
by overlapping neural structures. For foraging animals, sensory cues that are very similar can arise from prey, predators,
or harmless agents, and misidentification can carry considerable fitness costs [132]. In the laboratory, visual cues such
as small spots can elicit either approach or escape behaviour in zebrafish, frogs, and crabs, depending on their size and
location in the visual field [122,133–135], while mice will approach and capture crickets, but freeze to similarly sized
overhead visual stimuli [70,136]. In zebrafish, visual processing of prey-like stimuli has been localised to specific
pretectal and tectal regions [121,122,133,134,137], suggesting at least partial circuit overlap in predator and prey
detection and classification processes.

Interestingly, despite their opposing goals, some of the movements required for predation and evasion are so similar
[138] that prey-capture behaviour of goldfish incorporates Mauthner-mediated C-starts [139], and it has been
suggested that archer fish use Mauthner cells in predictive prey-capture turns [140]. In rodents, the SC is involved
in approach and prey-capture behaviours as well as defence. However, activity manipulations and lesions implicate the
lateral subregion of the SC in approach and prey capture, whereas the medial subregion is more strongly implicated in
defence and, interestingly, the two subregions possess partially segregated input and output connections in rodents
[17,42,94,141]. Furthermore, several recent studies have begun to deconstruct the behavioural modules of hunting in
mice by examining the role of specific projections to the PAG from the CeA, lateral hypothalamus, and medial preoptic
area which can drive prey pursuit through projections to the mesenphalic locomotor region, whereas CeA to reticular
formation projections evoke killing bites [142–144]. How all of these network elements interact dynamically to produce
the successive stages of visually-guided predation is not yet clear; however, revisiting the dual, comparative study of
predation and evasion using modern techniques should be a powerful paradigm for uncovering general principles of
how the brain generates goal-directed behaviour.
Many species are capable of producing fast stereotyped escape, as well as slower and more
variable responses that map onto distinct neural circuits, where the chosen type of escape
depends on properties such as threat intensity and threat approach speed. In fish and
amphibians this generally corresponds to eliciting a Mauthner system-mediated response
[102,103] or Mauthner system-independent escape [20,103]. Recent work in larval zebrafish
has shown that escape probability and direction are modulated by the speed of a visual
stimulus, where looming that mimics a fast-approaching predator elicits ‘perfect avoidance’
turns of 180� and fast reaction times, whereas slow looming leads to less predictable
responses with variable bend angles and reaction times. Similar behaviour is observed in
crayfish, which engage in stereotyped, giant-fibre-mediated tail flips in response to abrupt
threats, and flexible, non-giant-fibre-dependent tails flips directed away from the source of
aversion or towards specific locations when facing a gradual threat [104]. Flies also show
threat-dependent flexibility of escape actions [105], performing either slow or fast take-offs in
the early phase of escapes, thereby optimizing wing stability or speed, respectively [96,106].
This decision depends on the retinal angular velocity and size of looming stimuli, and
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information about each feature is conveyed to the giant-fibre escape circuit by a set of non-
overlapping visual projection neurons [90]. Similarly, crabs show flexibility in escape responses
to looming stimuli, adjusting the speed of escape dynamically as a function of the expansion
properties of the loom [89]. Humans also seem to rely on two parallel escape circuits [48]: one
for quick decisions in the face of very imminent threats, via the PAG and midcingulate cortex,
and another for response to nonimminent threats, involving the posterior cingulate and
ventromedial prefrontal cortices as well as the hippocampus.

Recent neurophysiological and behavioural data show comparable response flexibility in mice
exposed to expanding spots of different contrast. Although it is not clear whether mice display
two distinct modes of escape, flight vigour is strongly modulated by threat salience, and
excitatory cells of the deep mSC (dmSC) seem to encode a variable correlated with threat-
stimulus saliency, which activates the dPAG network to initiate escape once dmSC activity
exceeds a threshold [19]. Activity of dPAG neurons strongly correlates with escape speed
[19,24,77], and, as threat saliency increases, stronger activation of dmSC neurons leads to
higher firing frequency in the dPAG, thereby suggesting a mechanistic link between threat-
stimulus intensity and escape response vigour [19].

Knowledge about the Environment Controls Escape Execution
A crucial determinant of escape success is taking into account the spatial features of the local
environment, such as routes to shelter and the presence of obstacles, which have been shown
to modulate escape responses across phyla. In fish and frogs, the onset of C-start responses is
sensitive to stationary obstacles: in open water the initial C-start angle is a function of the angle
of the approaching threat, but when these animals are close to a wall their escape trajectories
cannot be predicted from the threat-stimulus approach angle, and are instead biased away
from the wall, even if the animal needs to turn towards the approaching threat [107] (Figure 2,
top right panel).

Many animals, including fish, lizards, and rodents, escape towards a known refuge [5]. Shelter-
directed escapes can be a navigational challenge because the shelter might not be immediately
visible from the current location, and therefore require the computation of an escape route from
the current position to a previously memorised location. In agreement, rodents do not need to
see the shelter nor rely on proximal visual or olfactory cues to successfully escape to it, but
instead use a rapidly formed and flexible memory of the shelter location [6,85]. Intriguingly, mice
terminate escape when reaching the shelter location even after it has been moved, suggesting
that shelter cues are also not necessary to stop escape, and that this instead might rely on the
comparison of current position with a spatial location derived from other sources [85]. In
support of the notion that escape to shelter is a behaviour with the primary goal of reaching
safety instead of simply moving away from threat, mice initiate escape with a head-rotation
movement towards the shelter followed by an acceleration straight towards it, regardless of the
initial position of the mouse and even if this means approaching the threat [85]. The selection of
refuge is influenced by several variables, including the safety value of the shelter, the distance
and relative position of the predator, and competition for access [108–110] (Figure 2, bottom
left panel).

In addition, the local social environment can also modulate escape behaviour (Box 3). School-
ing herring have uniform escape trajectories that are less flexible than the responses of solitary
animals, and which decrease the likelihood of collisions [111], and even fast-response systems,
such as the C-start in guppies, can exhibit similar dependency [112] (Figure 2, bottom right
panel). In crayfish, social hierarchy affects the excitability of the lateral giant (LG) escape circuit
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Box 3. Collective Escape Decisions

Congregating with conspecifics can be an advantageous antipredation strategy. As the number of potential prey
increases, the chance that a given individual will be predated decreases through dilution [145] and through the
‘confusion effect’ that hinders pursuit of single prey [146]. Importantly, grouping can increase the speed and accuracy
of predator-avoidance decisions [147], and reduce the time devoted to threat vigilance through increased probability of
detecting predators [148].

Foraging in a group can enhance threat detection in several ways. First, many animal species emit dedicated alarm
signals to warn conspecifics of threatening situations. Various modalities of signals have been described, including
chemical alarm signals [149] and alarm calls [150]. Alarm calls can carry information about the specific nature of a threat,
such as the type and location of the detected predator [151], and can cause different responses in conspecifics: vervet
monkeys tend to look up before initiating an escape following alarm calls elicited in response to eagles, whereas snake-
elicited calls cause them to look down [152]. Emitting alarm calls when faced with predators may have the added benefit
of accentuating dilution and confusion effects, but can also attract the attention of a predator [153]. It seems that
animals can take this potential cost into consideration because they do not always emit alarm calls when faced with
threat. Instead, sudden silence from conspecifics ceasing movement can function as a defence-inducing cue in rats
[154], whereas crested pigeons preferentially flee from the sounds of escape take-offs of conspecifics versus routine
take-offs [155]. In conditions of reduced visibility, where the benefit of hearing an alarm call increases, starlings increase
the frequency of calls, suggesting that there is a dynamic cost–benefit computation controlling alarm-call emission
[156]. A second means for increasing threat detection in groups is to observe the initiation of defensive behaviour by
other individuals in the group. In some species of sparrows that emit little information about detected threat, individuals
that do not directly detect threat infer it through the temporal profile of departures of other individuals from the flock
[157].

In addition to threat detection, being in a group setting also influences escape execution, which becomes extremely
dynamic due to the additional navigation constraints imposed by the presence of nearby animals also trying to escape.
Fish schools, which are thought to be primarily an antipredator adaptation, provide an excellent example of collective
escape behaviour. Schools of sand eels can execute diverse coordinated escape actions such as split, join, or hourglass
formation [158], and in herring the type of escape formation depends on the approach angle of the threat [159]. For
groups faced with predator-related decisions, it is likely that increases in apparent cognitive performance with group
size are due to multiple mechanisms acting simultaneously, such as swarm intelligence and pool-of-competence effects
[147,160], and that their relative contributions are context-dependent.

Outstanding Questions
How, and where in the brain, is the
choice between escape and other
defensive actions computed? Prey
can exhibit multiple defensive behav-
iours that are flexibly selected as a
function of environment and threat
contingencies, but which neural cir-
cuits implement this action selection?
Are models of action selection devel-
oped for learned actions valid for
instinctive behaviours, or are there
specialised ‘low-level’ modules for
computing instinctive choice of
defence actions? Do the basal ganglia
play a role in escape behaviour? To
what extent do the apparent defensive
strategies rely on deliberative
processes?

How does the mammalian brain coor-
dinate complex escapes? Fleeing to
shelter may require navigation through
complex environments and negotia-
tion of obstacles or multiple route
options, but where are these compu-
tations made? Can they be indepen-
dently implemented by subcortical
structures, or do they require coordi-
nation with cortical circuits? Where are
variables that matter for escaping suc-
cessfully encoded in the brain, and
where are they integrated into escape
decisions? Learning of these variables,
such as shelter location, can be an
extremely fast process, but how is this
implemented at the neuronal and syn-
aptic level?

How are experience-dependent
changes in escape behaviour achieved
at a neuronal level? Are they imple-
mented as ‘top-down’ cortical control
over subcortical areas, or are the mid-
brain circuits underlying innate behav-
iours themselves plastic? Are changes
such as threat habituation long-lasting
or even permanent? How are prior
beliefs and expectations about threat
and escape encoded and updated,
and how do they influence the core
escape-circuit modules?
in a serotonin-dependent manner [113], causing reduced LG excitability in subordinate indi-
viduals, exclusively during conspecific interactions. This modulation biases subordinates to
engage in slower, non-LG-mediated, flexible escapes, while dominant individuals retain their
ability to execute fast, LG-mediated escapes in response to unexpected attacks [114]. These
findings suggest that neuromodulation might influence escape at multiple stages, from threat
detection (see above) to escape execution.

Concluding Remarks
Although escape behaviour may appear to be simple, there is overwhelming evidence at the
behavioural level that much more is involved than simple feedforward sensorimotor trans-
formations. For systems neuroscience, escape behaviour provides a powerful ethological
paradigm for studying the neural basis of cognitive processes such as perceptual and
value-based decision-making, or goal-directed actions. While escape is often perceived as
a simple stimulus-reaction, the lack of apparent explicit deliberation should not be taken as an
indication of a simple computational process. Escape might need to be implemented under
strong timing constraints and favour short reaction times, but even very fast escape responses
can integrate multiple variables such as spatial constraints of the environment and economic
trade-offs. The difference with other actions might be that the results of the computations
relevant for successful escape are cached and ready to use (pre-computed cognitive con-
structs) instead of being computed de novo on the spot. This raises interesting parallels with
heuristics-based decision-making, which might rely on similar processes, and thus investiga-
tion of escape mechanisms might shed light on this important component of behaviour.
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Although the neurophysiological mechanisms of threat detection and escape initiation have
been studied in detail in some species, we know very little about how cognitive control of
escape is implemented at the mechanistic level (see Outstanding Questions). As new software
tools for rigorous behavioural quantification in freely behaving animals become available
[115,116], and are paired with high-density recordings of neural activity across multiple brain
areas, our understanding of the neural basis of natural behaviours will increase at a fast pace.
Most escape circuits receive projections from numerous telencephalic areas, and we anticipate
that exciting advances in the field will come from investigating the intersection between cortical
and subcortical circuits. This research avenue will improve not only our understanding of neural
mechanisms of cognitive control of escape but, in doing so, will also advance our understand-
ing of cortical function and cognition in general.
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