
Peyer’s patches (26). Seemingly unstable Foxp3
expression observed in these and other studies
(21) can be due to cellular stress, the presence of
few contaminating Foxp3– cells or cells which
underwent transient Foxp3 up-regulation, or
recently generated Foxp3+ cells on their way to
stable Foxp3 expression yet still able to expand
and differentiate into effector T cells in lympho-
penic or nonlymphopenic settings. Consistent
with the latter notion, loss of Foxp3 expression
by a minor population of YFP+ cells was ob-
served during induction of Foxp3 in peripheral
YFP–GFP–CD4+ Tcells under lymphopenic con-
ditions. In contrast, YFP+GFP+ Treg cells main-
tained Foxp3 expression in these experiments
(fig. S13). Furthermore, transient expression of
Foxp3 during retinoic acid receptor (RAR)–related
orphan receptor–g (RORg)–dependent differen-
tiation of Th17 cells was visualized through ac-
tivation of the R26Y allele by Cre recombinase
constitutively expressed under control of the en-
dogenous Foxp3 locus (27). Additionally, differ-
ences in regulation of expression ofFoxp3 bacterial
artificial chromosome (BAC) transgene and the
endogenous Foxp3 locus encoding Cre can also
affect the discrepant outcomes of YFP-tagging
of Treg cells in the corresponding experimental
models.

We demonstrated that the Treg cell lineage
is remarkably stable under physiologic condi-
tions and after a variety of challenges. Stable

Foxp3 expression in committed Treg cells is prob-
ably facilitated by a positive autoregulatory loop
(28). Our results also suggest that continuous self-
renewal of the established Treg cell population
combined with heritable maintenance of Foxp3
expression serves as a major mechanism of main-
tenance of this lineage in adult mice.
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Dendritic Discrimination of Temporal
Input Sequences in Cortical Neurons
Tiago Branco, Beverley A. Clark, Michael Häusser*

The detection and discrimination of temporal sequences is fundamental to brain function and
underlies perception, cognition, and motor output. By applying patterned, two-photon glutamate
uncaging, we found that single dendrites of cortical pyramidal neurons exhibit sensitivity to the
sequence of synaptic activation. This sensitivity is encoded by both local dendritic calcium signals
and somatic depolarization, leading to sequence-selective spike output. The mechanism involves
dendritic impedance gradients and nonlinear synaptic N-methyl-D-aspartate receptor activation
and is generalizable to dendrites in different neuronal types. This enables discrimination of
patterns delivered to a single dendrite, as well as patterns distributed randomly across the dendritic
tree. Pyramidal cell dendrites can thus act as processing compartments for the detection of synaptic
sequences, thereby implementing a fundamental cortical computation.

In sensory pathways, the relative timing of
spikes from different neuronal populations
can represent features of stimuli (1–4). A fun-

damental problem in cortical sensory processing
is, thus, the discrimination of different spatio-
temporal sequences of inputs (5). Although net-
works composed of simple neurons can, in
principle, decode temporal sequences, the size

and complexity of such networks can be greatly
reduced if individual neurons can perform
temporal decoding (6, 7). Dendritic trees might
contribute to this decoding, because they are
highly nonlinear devices that can locally process
and integrate synaptic signals (8–10). For exam-
ple, spatiotemporally clustered inputs trigger
dendritic spikes (11–15), which can generate
independent functional subunits, enhancing the
computational potential of the neuron (16–18)
and encoding spatial and temporal input synchro-
ny. Whether these nonlinear dendritic properties
can be exploited to perform higher-order compu-
tations such as temporal sequence detection is

unknown. In 1964, Wilfrid Rall predicted that,
because dendrites act as a delay line, activation of
synapses along a dendrite in different directions
should produce different responses at the soma
(19). Although the dendrites of retinal neurons
exhibit such direction selectivity (20–22), ex-
perimental investigation of the sensitivity to
spatiotemporal sequences of synaptic activation
in cortical pyramidal cell dendrites has been a
challenge due to the difficulty in delivering the
spatiotemporal input patterns with the necessary
submillisecond and submicron precision.

To test the sensitivity of single dendrites to the
order of activation of a defined set of synapses,
we controlled spatiotemporal input patterns using
multisite, two-photon glutamate uncaging at iden-
tified dendritic spines (15, 23) in layer 2/3 pyram-
idal neurons of somatosensory and visual cortex.
We first studied the sensitivity of single dendrites
to an ordered sequence of synaptic activation in
opposite directions, selecting 8 to 10 spines on
single basal and apical oblique dendritic branches
(Fig. 1, A and B). Activating each site in isolation
(Fig. 1C) produced synaptic responses [glutamate
excitatory postsynaptic potentials (gluEPSPs)]
within physiological parameters (fig. S1). Se-
quential activation of spines from the dendritic
branch to the soma (IN) or from the soma to the tip
(OUT) produced strongly directionally sensitive
responses. The IN direction always produced a
larger somatic response than the OUT direction
(Fig. 1, D and E) (31 T 4% increase, P < 0.0001,
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n = 20 observations, corresponding to a mean
peak voltage difference of 2.8 T 0.4 mV), even
when stimulating only three inputs (fig. S2). The
EPSP peak was dependent on input velocity (Fig.
1, F and G), with optimal direction sensitivity at
2.6 T 0.5 mm/ms (Fig. 1H). Axonal action po-
tential output was highly directionally sensitive,
with a higher spike probability in the IN direction
than the OUT direction (38 T 9% increase, P =
0.0013, n = 7) (Fig. 1, I to K).

The readout of sequence sensitivity was not
just electrical but also chemical, as local dendritic
Ca++ signals also showed strong direction and
velocity sensitivity (Fig. 2, A to C). Peak local

dendritic Ca++ signals were always larger in the
IN versus the OUT direction (48 T 13% increase,
P = 0.0047, n = 6) and varied significantly with
input velocity [P = 0.0431 and 0.0194 for IN
and OUT, respectively; analysis of variance
(ANOVA) test], with the optimal velocity for di-
rection sensitivity being similar to that of the
somatic EPSP (2.0 T 0.4 mm/ms) (Fig. 2, D and
E). The spatial Ca++ profiles along the dendrite
were also different for the IN and OUT directions
(Fig. 2, C and F).

What are the mechanisms underlying direc-
tion and velocity sensitivity in single dendrites?
First, the somatic voltage responses to input se-

quences were markedly supralinear (Fig. 3A)
(peak voltage = 223 T 9% of the arithmetic sum,
P < 0.0001) and voltage-dependent (fig. S3, B
toD) and did not exhibit a clear somatic threshold
or a step increase in dV/dt (where V is voltage,
and t is time) (fig. S3A) (13, 15), but rather
developed gradually with increasing numbers of
activated synapses (Fig. 3B). Next, we inves-
tigated the role ofN-methyl-D-aspartate (NMDA)
receptors (NMDARs), given their important
contribution to dendritic nonlinearities in py-
ramidal cells (13, 16–18, 24). The NMDAR
blocker D-AP5 abolished EPSP supralinearity
(103 T 3% of linear sum, P = 0.336, n = 8) (Fig.

Fig. 1. Single dendrites are sensitive to the direction and velocity of synaptic
input patterns. (A) Layer 2/3 pyramidal cell filled with Alexa 594 dye; yellow
box indicates the selected dendrite. (B) Uncaging spots (yellow) along the
selected dendrite. (C) Average individual uncaging responses at the soma. (D)
Somatic responses to IN (red) and OUT (blue) directions at 2.3 mm/ms (aver-
ages denoted by bold lines). (E) Plot comparing peak amplitudes for IN and
OUT sequences at the optimal velocity for direction selectivity [green circle,

example shown in (D)]. (F) Direction-selective responses at different velocities.
(G) Relation between peak voltage and input velocity (values normalized to
the maximum response in the IN direction for each cell, n = 15). Error bars
indicate SEM. (H) Relation between direction selectivity and input velocity (n =
15). (I) Direction selectivity of spike probability; population data shown in (J)
(**P = 0.0013, n = 7). (K) Relation between spike probability and velocity (n =
7, average of both directions).
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Fig. 2. Dendritic calcium influx is direction and velocity sensitive. (A) Basal
dendrite of a layer 2/3 pyramidal neuron. Uncaging locations indicated in yellow;
linescan profile used for Ca++ imaging in red. (B) Spatiotemporal profile of Ca++

signals triggered by IN and OUT input patterns at two different input velocities.
(C) Three-dimensional plot of the data in (B) (2.3 mm/ms). (D) Relation between

Ca++ signals and input velocity (DF/F values, where F is fluorescence, normalized to
the mean DF/F of all velocities in the IN direction of each cell). Error bars indicate
SEM. (E) Relation between direction selectivity of Ca++ signals and input velocity.
(F) Average spatial profile of the integrated Ca++ transient across the dendrite (n =
5 cells) (lines indicate SEM; bar indicates region of statistical significance).

Fig. 3. NMDA receptor activation is required for
robust velocity and direction coding. (A) Somatic
responses to IN and OUT sequences (red and blue
traces, respectively) and linear sum of the indi-
vidual synaptic responses (gray traces). (B) (Left)
Activating more synapses (1 to 7) produces EPSPs
that are progressively larger than the linear sum
of the individual responses. (Right) Summary plot
of eight cells. Solid line, experimental data points;
dashed line, unity line. Error bars indicate SEM. (C)
Same as in (A), but in the presence of AP5, which
blocks the supralinearity. (D) Velocity and direc-
tion sensitivity is abolished in AP5. (E) Comparing
peak amplitudes for IN and OUT sequences at the
optimal velocity for direction selectivity [green
circle, example shown in (C)] (compare with Fig.
1E). (F) Summary plot of direction selectivity ver-
sus velocity (compare with Fig. 1G). (G) Reduced
velocity sensitivity in AP5 (EPSPs normalized to
the average IN maximum in control cells in the
absence of D-(–)-2-amino-5-phosphonopentanoic
acid) (compare with Fig. 1H).
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3C), consistent with amplification via NMDA-
dependent regenerative signal boosting and
NMDA spikes (25). The NMDAR blocker also
abolished direction sensitivity (Fig. 3, D to F) (IN
response 8 T 3% larger than the OUT response;
peak voltage difference of 0.4 T 0.4 mV,
significantly smaller than control, P = 0.0011)
and velocity sensitivity (Fig. 3G), as well as any
detectable dendritic calcium signals (fig. S4).

To probe the biophysical basis of direction
sensitivity, we used a detailed compartmental
model of layer 2/3 pyramidal cells. Direction sen-
sitivity could be reproduced with a relatively sim-
ple model, with passive dendrites and synapses
containing AMPA andNMDAconductances (fig.
S5). The simulations showed that the mecha-
nism of direction sensitivity in single dendrites
results from the interaction of two factors: (i) the
gradient of input impedance along the dendrite
combined with (ii) the highly nonlinear voltage
dependence of the NMDAR conductance. This
leads to asymmetric recruitment of NMDA re-
ceptors when activating synapses in different
sequences, such that sequences starting from
regions of high input impedance (the tip of the
dendrite) generate more initial local depolariza-
tion and, hence, more cumulative NMDAR ac-
tivation. We verified the differential recruitment
of nonlinearities between proximal and distal
synapses with calcium imaging and glutamate
uncaging in different regions of the same dendrite
(fig. S6). The relative simplicity of this mecha-
nism suggests that it should be general; indeed,
the vast majority of dendrites across a wide range
of morphologies exhibit sufficient impedance gra-
dients to permit substantial direction sensitivity
(fig. S7).We confirmed this experimentally by show-
ing that neuronswith very differentmorphologies—
layer 5 pyramidal cells and hippocampal dentate
gyrus granule cells—also exhibit robust direction
sensitivity (fig. S8). This is especially relevant in
the latter, as they receive layered input from the
entorhinal cortex, with the lateral cortex project-
ing distally and the medial cortex proximally.

Can this mechanism be used to discriminate
more complex patterns of input? We first as-
sessed discrimination of random patterns by a
single dendrite (Fig. 4, A and B). In both the
model (Fig. 4, A and C) and the experiments
(Fig. 4, B and D), different sequences of the same
inputs produced a wide range of somatic EPSP
amplitudes (P < 0.05, ANOVA on each cell;
mean difference between experimentally tested
patterns = 2.3 mV T 0.22 mV; 39 T 8% of all
possible sequence comparisons were significant,
P < 0.05, t test with Bonferroni correction, n = 7),
which was dependent on NMDA receptor activa-
tion (mean difference between patterns = 0.69 T
0.13 mV, P < 0.0001) (Fig. 4, C and D). This is
because synapses at different locations along
the dendrite differentially influence each other,
depending on their relative timing. The broad
EPSP amplitude distribution reflects the discrim-
inability of different sequences, with the likeli-
hood of discriminating any two sequences (>1-mV
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Fig. 4. Dendritic discrimination of complex input sequences. (A) Random patterns of nine inputs were
generated and sorted by their directionality index (35). Four sample patterns (numbers showing activation
order) and corresponding directionality index are shown. Patterns were played into a single dendrite in a
pyramidal cell model or (B) experimentally in single pyramidal cell dendrites. The peak response is different for
different patterns, and responses become similar with hyperpolarization (or without NMDA receptors in the
model). (Inset) Dye-filled neuron with dendrite used in the experiment enclosed by a yellow box. Vm,
membrane potential. (C) Pattern separability (measured by somatic peak EPSP distribution) was much greater
with NMDA conductances present. (D) Peak EPSP voltage measured experimentally depends on input-pattern
similarly to themodel (C). Asterisks indicate significant differences between EPSP peaks for the example shown;
hyperpolarization reduces the ability to discriminate different patterns. Error bars indicate SEM. (E) A layer 2/3
pyramidal cell with uncaging spots (yellow) randomly distributed across eight dendrites. (F) Somatic responses
to sequential uncaging in forward (red traces) or reverse sequence (blue traces; averages denoted by bold lines)
are different at resting potential and become similar upon hyperpolarization. (G) Three stimulation electrodes
(denoted by letters A, B, and C) were placed in different cortical layers and activated in two different sequences.
(H) The EPSP depends on the sequence and on NMDAR activation. Black dashed lines denote control response.
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peak difference) being 40%. This distribution
was insensitive to feedback inhibition but shifted
to a smaller mean with the same variance with
feedforward inhibition, suggesting that the same
NMDA-dependent mechanism can represent the
combined spatiotemporal sequence of excitation
and inhibition (fig. S9). Whereas synaptic inter-
actions are maximal if synapses are on the same
dendrite, voltage can spread to other parts of the
dendritic tree, the extent depending on the tree
geometry and biophysical properties. We there-
fore examined whether neurons could also dis-
criminate patterns of input delivered to multiple
dendrites. By activating multiple spines across
several dendrites, it was possible to discriminate
the response to activation of different sequences
of distributed input patterns (Fig. 4, E and F)
(mean EPSP peak difference = 3.3 T 0.8 mV, P =
0.0065, n = 9; tested sequences had no net direc-
tionality; see fig. S10, E and F, and supporting
online material text). This discriminability was
fully reproduced by our model (fig. S10, A and
B) and was severely reduced upon hyperpolar-
ization (0.58 T 0.2 mV, P= 0.0003) (Fig. 4F) and
by block of NMDA receptors (fig. S10B). We
further extended these results using the model, in
which input sequences could be reliably dis-
criminated over a wide range of spatial input
distributions (fig. S10, C and D) and experimen-
tally by showing that sequential activation of mul-
tiple input pathways could be discriminated
(mean peak difference in control 2.8 T 0.3 mV
versus 0.9 T 0.2 mV in AP5, P = 0.0121, n = 6)
(Fig. 4, G and H).

We have shown that single cortical pyramidal
cell dendrites can encode the temporal sequence
of synaptic input. The underlying mechanism
relies on the interplay between nonlinear acti-
vation of synaptic NMDA receptors and the im-
pedance gradient along dendritic branches, two
fundamental biophysical features common to
most neurons in the brain. The active, regenera-
tive nature of this mechanism contrasts with the
classic, passive directional selectivity proposed by
Rall (19), which requires electrotonically very
long dendrites. Instead, the NMDA-dependent
mechanism produced strong sensitivity to the di-
rection of synaptic input, even in short pyramidal
cell dendrites, making it more general and

sensitive to synaptic input, robust against timing
jitter, and further enhanced and tunable by
depolarization [such as in network UP states
(26, 27)]. Different input sequences also lead to
differential dendritic Ca++ signals, raising the
possibility that they will engage plasticity mech-
anisms to different extents (28, 29). The large
dynamic range conferred by NMDA receptor
activation allowed for high discriminability of
multiple temporal sequences, both when inputs
were on the same dendrite or when they were
dispersed over the dendritic tree. This further
extends the range of computational and plasticity
mechanisms that have recently been described in
dendrites (10, 13, 15–18, 30, 31). In particular,
this sensitivity to temporal input sequences may
be relevant for detecting features of sensory
stimuli and for encoding the speed and direction-
ality of waves of activity propagating in the cor-
tex (32–34). It is also especially relevant for
circuits with layered input such as the hippo-
campus, where this mechanism could be used by
dentate gyrus granule cells to directly detect the
sequence of entorhinal cortex activation. These
computations are conventionally thought to be
implemented at the level of neural populations,
and thus, our results represent a demonstration of
the power of dendrites for solving computational
problems in the brain.
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) discovered that single dendrites were indeed sensitive to both the directionDestexheAugust; see the Perspective by 
 (p. 1671, published online 12et al.Branco two-photon calcium imaging, electrophysiology, and computational modeling, 

Can dendrites read out spatiotemporal input sequences? Combining two-photon glutamate uncaging and
Discriminating Dendrites
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