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Abstract Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly

nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to

computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical

for the efficient integration of synaptic inputs in circuits performing analog computations with

spiking neurons. We developed a theory that formalizes how a neuron’s dendritic nonlinearity that

is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity

patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential

fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the

responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon

glutamate uncaging. These results reveal a new computational principle underlying dendritic

integration in cortical neurons by suggesting a functional link between cellular and systems–level

properties of cortical circuits.

DOI: 10.7554/eLife.10056.001

Introduction
The dendritic tree of a cortical neuron performs a highly nonlinear transformation on the thousands

of inputs it receives from other neurons, sometimes resulting in a markedly sublinear

(Longordo et al., 2013) and often in strongly superlinear integration of synaptic inputs

(Losonczy and Magee, 2006; Nevian et al., 2007; Branco and Häusser, 2011; Makara and

Magee, 2013). These nonlinearities have been traditionally studied from the perspective of single-

neuron computations, using a few well-controlled synaptic stimuli, revealing a remarkable repertoire

of arithmetic operations that the dendrites of cortical neurons carry out (Poirazi and Mel, 2001;

London and Häusser, 2005; Branco et al., 2010) including additive, multiplicative and divisive ways

of combining individual synaptic inputs in the cell’s response (Silver, 2010). More recently, the role

of nonlinear dendritic integration in actively shaping responses of single neurons under in vivo condi-

tions has been demonstrated in several cortical areas including the hippocampus

(Grienberger et al., 2014), as well as visual (Smith et al., 2013) and somatosensory cortices

(Xu et al., 2012; Lavzin et al., 2012; Palmer et al., 2014).
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However, while many of the basic biophysical mechanisms underlying these nonlinearities are well

understood (Stuart et al., 2007), it has proven a daunting task to include all these mechanisms in

larger scale network models to understand their interplay at the level of the circuit (Herz et al.,

2006). Conversely, studies of cortical computation and dynamics have largely ignored the complex

and highly nonlinear information processing capabilities of the dendritic tree and concentrated on

circuit-level computations emerging from interactions between point-like neurons with single,

somatic nonlinearities (Hopfield, 1984; Seung and Sompolinsky, 1993; Gerstner and Kistler,

2002; Vogels et al., 2011). Therefore, it is unknown how dendritic nonlinearities in individual cells

contribute to computations at the level of a neural circuit.

A limitation of most theories of nonlinear dendritic integration is that they focus on highly simpli-

fied input regimes (Mel et al., 1998; Poirazi et al., 2003; Archie and Mel, 2000; Poirazi and Mel,

2001; Ujfalussy et al., 2009), essentially requiring both the inputs and the output of a cell to have

stationary firing rates. This approach thus ignores the effects and consequences of temporal varia-

tions in neural activities at the time scale of inter-spike intervals characteristic of in vivo states in cor-

tical populations (Crochet et al., 2011; Haider et al., 2013). In contrast, we propose an approach

which is specifically centered on these naturally occurring statistical patterns – in analogy to the prin-

ciple of ‘adaptation to natural input statistics’ which has been highly successful in accounting for the

input-output relationships of cells in a number of sensory areas at the systems level (Simoncelli and

eLife digest Imagine that you are in the habit of checking three different weather forecasts each

day, and then one day in early September the first forecast suddenly predicts snow. If you live in an

area where it doesn’t normally snow in September, your initial reaction is likely to be surprise.

However, you will not be quite so surprised to see a prediction of snow in the second forecast, and

by the third forecast you will hardly be surprised at all.

In these three cases, you have responded to the same piece of information in a different way. In

mathematics, this type of response is referred to as “nonlinear” because the output (varying

degrees of surprise) is not directly proportional to the input (identical predictions of snow). In the

case of the weather forecasts, the source of the nonlinearity was the fact that the three predictions

were not truly independent. Instead, they corresponded with one another, or “correlated”, because

all three depended on the weather itself.

In the brain, a single neuron can receive thousands of inputs from other cells. These are received

via junctions called synapses that form between the cells. In many cases, the synapses form on the

receiving neuron’s dendrites – the short branches that protrude from its cell body. Each dendrite

can receive signals from hundreds of other neurons, and must combine these inputs to produce a

single neuronal response. How dendrites do this is not clear.

Ujfalussy et al. have now developed a computational model that predicts the optimal response of

dendrites to complex and realistic inputs from other neurons. The model shows that when dendrites

receive inputs from neurons that independently respond to different stimuli, the optimal response is

for the dendrites to average the inputs. This is a form of linear processing. By contrast, when the

inputs are correlated – for example, because they come from neurons responding to the same

stimulus – the optimal response is nonlinear processing. In this and other cases, the optimal

response predicted by the model is similar to the response observed in real dendrites.

The model also makes a number of testable predictions; for example, that neurons with

correlated activities will tend to form clusters of synapses close together on the dendrites of a target

neuron, whereas neurons with unrelated activities will tend to form synapses that are further apart.

Somewhat unexpectedly, Ujfalussy et al. show that compensating for input correlations accounts for

almost all the nonlinearities that can be found in real neurons’ dendrites – at least in response to

relatively simple input patterns. Thus, it remains to be shown whether nonlinear dendritic responses

to more complex input patterns can also be explained by this single principle. Further studies are

also required to understand how different plasticity mechanisms enable neurons to achieve this

close match between input correlations and dendritic processing.

DOI: 10.7554/eLife.10056.002
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Olshausen, 2001). We pursued this principle in understanding the integrative properties of individ-

ual cortical neurons, for which the relevant statistical input patterns are those characterising the spa-

tio-temporal dynamics of their presynaptic spike trains. Thus, rather than modelling specific

biophysical properties of a neuron directly, our goal was to predict the phenomenological input inte-

gration properties that result from those biophysical properties and are matched to the statistics of

the presynaptic activities.

Our theory is based on the observation that cortical neurons mainly communicate by action

potentials, which are temporally punctate all-or-none events. In contrast, the computations cortical

circuits perform are commonly assumed to involve the transformations of analog activities varying

continuously in time, such as firing rates or membrane potentials (Rumelhart et al., 1986; Hop-

field, 1984; Dayan and Abbott, 2001; Archie and Mel, 2000; London et al., 2010). This implies a

fundamental bottleneck in cortical computations: the discrete and stochastic firing of spikes by neu-

rons conveys only a limited amount of information about their rapidly fluctuating activities

(Pfister et al., 2010; Sengupta et al., 2014). Formalising the implications of this bottleneck mathe-

matically reveals that the robust operation of a circuit requires its neurons to integrate their inputs in

highly nonlinear ways that specifically depend on two complementary factors: the computation per-

formed by the neuron and the long-term statistics of the inputs it receives from its presynaptic

partners.

To critically evaluate our theory, we first illustrate qualitatively the nonlinearities that most effi-

ciently overcome the spiking bottleneck for different classes of presynaptic correlation structures.

Next, to provide biophysical insight, we demonstrate that the form of optimal input integration for

these presynaptic correlations can be efficiently approximated by a canonical, biophysically-moti-

vated model of dendritic integration. Finally, we test the prediction that cortical dendrites are opti-

mally tuned to their input statistics in in vitro experiments. For this, we use available in vivo data to

characterize the presynaptic population activity of two different types of cortical pyramidal cells.

Based on these input statistics, our theory accurately predicts the integrative properties of the post-

synaptic dendrites measured in two-photon glutamate uncaging experiments. We also show that

NMDA receptor activation is necessary for dendritic integration to approximate the optimal

response. These results suggest a novel functional role for dendritic nonlinearities in allowing post-

synaptic neurons to integrate their richly structured synaptic inputs near-optimally, thus making a

key contribution to dynamically unfolding cortical computations.

Results
Suppose that every day you check your three favorite websites for the weather forecast. On a Sep-

tember day, the first website forecasts snow which you find hard to believe as it is highly unusual in

your area – so you dismiss it as the forecaster’s mistake. However, when you read a similar forecast

on the second site, you become convinced that snow is coming, and by the time the third site brings

you the same news you are hardly surprised at all. Thus, even though all three sources conveyed the

same information (snow), they had different impact on you – in other words, their cumulative effect

was nonlinear. This nonlinearity was due to the fact that the information you get from these sites

tends to be correlated as they are all related to a common cause, the actual weather. Below we

argue that the same fundamental statistical principle, that correlated information sources require

nonlinear integration, accounts for the dendritic nonlinearities of cortical pyramidal neurons.

Overcoming the spiking bottleneck in circuit computations
To introduce our theory, we consider a postsynaptic neuron computing some function, f, of the

activity of its presynaptic partners, u (Figure 1A, top):

_v ¼ fðuÞ (1)

where _v is the resultant temporal change of the activity of the postsynaptic neuron. We chose u and

v to be analog variables, rather than for example digital spike trains, in line with the vast bulk of the-

ories of network computations (Hopfield, 1984; Dayan and Abbott, 2001; Pouget et al., 2003)

and experimental results suggesting analog coding in the cortex (London et al., 2010; Shadlen and

Newsome, 1998). In particular, we considered these variables to correspond to the coarse-grained

(low-pass filtered) somatic membrane potentials of neurons (in particular, excluding the action

Ujfalussy et al. eLife 2015;4:e10056. DOI: 10.7554/eLife.10056 3 of 51

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.10056


potentials themselves, as often reported in experimental data; Carandini and Ferster, 2000),

although the theory can equally be formalized in terms of instantaneous firing rates (Materials and

methods, Figure 1-figure supplement 1).

The standard description of neural circuit dynamics in Equation 1 hides an important informa-

tional bottleneck intrinsic to the operation of cortical circuits. While according to Equation 1, the

postsynaptic neuron’s analog activity, v, is required to depend directly on the analog activities of its

presynaptic partners, u, in reality it only accesses these presynaptic activities through the spikes the

Figure 1. Spike-based implementation of analogue computations in neural circuits. (A) Computation (top) is formalized as a mapping, f , from

presynaptic activities, u1; . . .uN (left), to the postsynaptic activity, v (right). As neurons communicate with spikes, the implementation (bottom) of any

computation must be based on the spikes the presynaptic neurons emit, s1; . . .sN (middle). Optimal input integration in the postsynaptic cells requires

that the output of g is close to that of f . (B) The logic and plan of the paper. Grey box in the center shows theoretical framework, blue boxes around it

show steps necessary to apply the framework to neural data. To compute the transformation from stimulation patterns (bottom left) to the optimal

response (bottom right) we assumed linear computation (top right) and specified the presynaptic statistics based on cortical population activity patterns

observed in vivo (top left). To demonstrate the validity of the approach, we studied the fundamental qualitative properties of the optimal response

(Figure 2), compared it to biophysical models (Figures 3–4) and tested it in in vitro experiments (Figure 5). (C) The optimal postsynaptic response

(purple line, bottom) linearly integrates spikes from different presynaptic neurons (top: rasters in shades of green; middle: membrane potential of one

presynaptic cell) if their activities are statistically independent. (D) Optimal input integration becomes nonlinear (purple line, bottom) if the activities of

the presynaptic neurons are correlated (rasters in shades of green, top), even though the long-term statistics and spiking nonlinearity of individual

neurons remains the same as in (C). In this case, the best linear response (black line, bottom) is unable to follow the fluctuations in the signal.

DOI: 10.7554/eLife.10056.003

The following figure supplements are available for figure 1:

Figure supplement 1. An example of supralinear input integration with firing rate-based rather than membrane potential-based computations.

DOI: 10.7554/eLife.10056.004

Figure supplement 2. The range of total dendritic inputs in vitro and in vivo.

DOI: 10.7554/eLife.10056.005

Figure supplement 3. Nonlinear computation.

DOI: 10.7554/eLife.10056.006
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presynaptic population transmits, s, incurring a substantial loss of information (Alenda et al., 2010;

Sengupta et al., 2014). Therefore, the function g a neuron actually implements on its inputs can only

depend directly on the presynaptic spikes, not the underlying activities (Figure 1A, bottom):

_v ¼ gðsÞ (2)

Importantly, while fðuÞ is dictated by the computational function of the circuit, the actual transfor-

mation of the synaptic input to the postsynaptic response, expressed by gðsÞ, is determined by the

morphological and biophysical properties of the cell. (For these purposes, we regard the presynaptic

side of synapses, transforming presynaptic spike trains to synaptic transmission events, as conceptu-

ally being part of the postsynaptic cell’s gðsÞ function.) How can then the neuron integrate the incom-

ing presynaptic spikes, as formalized by gðsÞ, such that the resulting postsynaptic response best

matches the required computational function, fðuÞ, thereby alleviating the fundamental informa-

tional bottleneck of spiking-based communication?

Determining the best gðsÞ is nontrivial because the same presynaptic spike train may be the result

of many different underlying presynaptic activities (Paninski, 2006), each potentially implying a dif-

ferent output of the computational function. This ambiguity is formalized mathematically as a poste-

rior probability distribution, PðujsÞ, expressing the probability that the analog activities of the

presynaptic cells might currently be u given their spike trains, s (Pfister et al., 2010;

Ujfalussy et al., 2011). The optimal response, i.e. the gðsÞ that minimizes the average squared error

relative to fðuÞ, is the expectation of fðuÞ under the posterior:

gðsÞ ¼

ð

fðuÞ PðujsÞ du (3)

Crucially, the expression for the posterior, given by Bayes’ rule, is:

PðujsÞ /PðsjuÞ PðuÞ (4)

Note that while Equations 3–4 do not reveal directly the specific biophysical properties the post-

synaptic cell should have, they tell us phenomenologically what signal integration properties should

result from its biophysical properties. In particular, they make it explicit that the optimal gðsÞ

depends fundamentally on two factors (Figure 1B, top):

1. the function that needs to be computed, fðuÞ, and
2. the statistics of presynaptic activities: PðuÞ, the prior probability distribution characterizing the

long-run statistics of multi-neural activity patterns in the presynaptic ensemble, and the likeli-
hood PðsjuÞ, expressing the potentially probabilistic relationship between analog activities
(e.g. somatic membrane potential trajectories) and emitted spike trains.

In the following, we show that the outcome of the integration of presynaptic spike trains in corti-

cal neurons approximates very closely the optimal response, and that dendritic nonlinearities are cru-

cial for achieving this near-optimality. For this, 1) we make an assumption about the computational

function of the postsynaptic cell, fðuÞ (Figure 1B, top right); 2) we constrain presynaptic statistics,

PðuÞ and PðsjuÞ, by in vivo data about cortical population activity patterns (Figure 1B, top left); and

with these 3) we compute the optimal response they jointly determine for various stimulation pat-

terns (Figure 1B, bottom left and right).

Optimal input integration is nonlinear
To specify our model, we considered the case when fðuÞ itself is linear. Although networks with

purely linear dynamics can perform non-trivial computations already (Dayan and Abbott, 2001;

Hennequin et al., 2014), in the general case, we do expect fðuÞ to be nonlinear, e.g. sigmoidal

(Hopfield, 1984). Nevertheless, in typical electrophysiological experiments only a small fraction of

the full dynamic range of a neuron’s total input is stimulated (Figure 1—figure supplement 2), and

so we approximate the computational function, fðuÞ, as being linear on this limited input range with-

out loss of generality. (See Figure 1—figure supplement 3 for the application of the theory to the

case of nonlinear f.) Yet, as we show below, for physiologically realistic statistics of presynaptic activ-

ity patterns, the optimal response combines input spike trains in highly nonlinear ways even in the

case of linear computation, predicting experimentally characterized nonlinearities in dendritic input

integration. In particular, second- and higher-order prior presynaptic correlations, represented by
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PðuÞ, will have a major role in determining the form of the corresponding optimal response. The like-

lihood, PðsjuÞ, also influences the optimal response, but only in its quantitative details, as it does not

involve correlations across neurons: each neuron’s firing is independent from the others’, given its

own somatic membrane potential (Materials and methods).

Previous suggestions for how postsynaptic neurons achieve reliable computation despite the sub-

stantial ambiguity about the individual presynaptic activities relied on the linear averaging of inputs

arriving from a sufficiently large pool of presynaptic neurons (Dayan and Abbott, 2001;

Pfister et al., 2010). However, linear averaging is only guaranteed to produce the correct output, as

dictated by Equations 3-4, if the activities of presynaptic neurons are statistically independent under

the prior distribution, i.e. PðuÞ ¼
Q

iPðuiÞ (Materials and methods). In contrast, the membrane poten-

tial (Crochet et al., 2011) and spiking (Cohen and Kohn, 2011) of cortical neural populations often

show complex patterns of correlations, which include both ‘spatial’ (cross-correlations between dif-

ferent neurons) and temporal components (auto-correlations, i.e. the correlation of the activity of

the same cell with itself at different moments in time). Thus, in this more general case, we expect

the optimal response to involve a nonlinear integration of spike trains. While temporal correlations

alone do not require nonlinear dendritic integration across synapses, only local nonlinearities within

each synapse, as brought about e.g. by short term synaptic plasticity (Pfister et al., 2010), spatial

correlations require the non-linear integration of spikes emitted by different presynaptic neurons.

To illustrate that presynaptic spatial correlations require nonlinear integration across synapses,

we compared the best linear response to a given presynaptic spike pattern with the optimal

response (Equation 3, as approximated by Equation 23) for two different input statistics that dif-

fered only in the correlations between the presynaptic cells but not in the activity dynamics or spik-

ing of individual neurons (temporal correlations). To compute the postsynaptic response, we

assumed that dendritic integration in the postsynaptic cell was linear but, in order to dissect the role

of dendritic integration across synapses from the effects of nonlinearities in individual synapses, we

allowed spikes from the same presynaptic neuron still to be integrated nonlinearly (Pfister et al.,

2010). In the first case (Figure 1C), when the presynaptic neurons were independent, the best linear

response was identical to the optimal response. However, if presynaptic neurons became correlated,

the optimal response became nonlinear and the best linear response was unable to accurately follow

the fluctuations in the input (Figure 1D).

Thus, inputs from presynaptic neurons whose activity tends to be correlated need to be nonli-

nearly integrated, while inputs from uncorrelated sources need to be integrated linearly. This could

be naturally achieved in the same dendritic tree by clustering synapses of correlated inputs to effi-

ciently engage dendritic nonlinearities, while distributing the synapses of uncorrelated inputs on dif-

ferent dendritic branches (Larkum and Nevian, 2008). Crucially, for correlated inputs it is also

necessary that the dendritic nonlinearities have just the appropriate characteristics for the particular

pattern of correlations in presynaptic activities.

The form of the optimal nonlinearity depends on the statistics of
presynaptic inputs
In order to systematically study the nonlinearities in the optimal response in the face of naturalistic

input patterns, we derived and analyzed its behavior for a flexible class of richly structured, corre-

lated inputs. Our statistical model for presynaptic activities, specifying the parametric forms of PðuÞ

and PðsjuÞ (Materials and methods and Figure 2—figure supplement 1), was able to generate a

variety of multi-neural activity patterns resembling the statistical properties described in in vitro and

in vivo multielectrode recordings of neuronal population activities (Figure 2A and D show two repre-

sentative examples). Once we have specified the statistical model of presynaptic activities, it

uniquely determined the optimal response to any given input pattern (Equations 3–4). Thus, we

used the same statistical model in two fundamentally different ways: first, to generate “naturalistic”

in vivo-like patterns of presynaptic membrane potential traces and spike trains; and second, to com-

pute the optimal response pattern to any stimulation pattern, be it “naturalistic” or parametrically

varying “artificial” as used in typical in vitro experiments.

The optimal response determined by this statistical model, for essentially any setting of parame-

ters, was inherently nonlinear because the additional effect of a presynaptic spike depended on the

pattern of spikes that had been previously received from the presynaptic population. Temporal cor-

relations in the presynaptic population caused the optimal response to depend on the spiking
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history of the same cell (Pfister et al., 2010), while crucially, the additional presence of spatial corre-

lations introduced a dependency on the past spikes of other cells. Thus, the integrated effect of mul-

tiple spikes could not be computed as a simple linear sum of their individual effects in isolation.

Specifically, a spike that was consistent with the information already gained from recent presynaptic

spikes had only a small effect on the response (Figure 2B). Conversely, a spike that was unexpected

based on the recent spiking history caused a larger change (Figure 2E).

As could be anticipated based on Equations 3-4, whether a spike counted as expected or unex-

pected relative to recently received spikes, and hence whether it had a small or large postsynaptic

effect, depended on the long-run prior distribution of presynaptic activities, PðuÞ. As a result, the

same pattern of presynaptic spikes led to qualitatively different responses under different prior dis-

tributions. In particular, sublinear integration was optimal when presynaptic activities exhibited

Gaussian random walks and thus they did not contain statistical dependencies beyond second order

correlations (Figure 2A-C), as seen in the retina and cortical cultures (Schneidman et al., 2006). This

was because with the activities of presynaptic neurons being positively correlated, successive spikes

conveyed progressively less information about the presynaptic signal resulting in sublinear integra-

tion (Figure 2C) and the strength of the sublinearity depended on the magnitude of correlations

(Ujfalussy and Lengyel, 2011). In contrast, supralinear integration was optimal when the presynaptic

population exhibited coordinated switches between distinct states associated with large differences

in the activity levels compared to activity-fluctuations within each state (Figure 2D–F). These

switches led to higher order statistical dependencies as seen in the cortex in vivo, either due to pop-

ulation-wide modulation by cortical state (Gentet et al., 2010; Crochet et al., 2011), or due to stim-

ulus-driven activation of particular cell ensembles (Harris et al., 2003; Ohiorhenuan et al., 2010;

Figure 2. Nonlinearities in the optimal response. (A–C) Second order correlations between presynaptic neurons (A) imply sublinear integration (B–C).

(A) Membrane potentials and spikes of two presynaptic neurons with correlated membrane potential fluctuations. (B) The optimal response (solid line)

to a single spike (left) and to a train of six presynaptic spikes (right, green colors correspond to different presynaptic cells, two of which are shown in A)

when the long-run statistics of presynaptic neurons are like those shown in (A). Shaded areas highlight how response magnitudes to a single spike from

the same presynaptic neuron differ in the two cases: the response to the sixth spike in the train (right, light blue shading) is smaller than the response to

a solitary spike (left, gray shading) implying sublinear integration. Dashed line shows linear response. (C) Response amplitudes for 1–12 input spikes

versus linear expectations. (D–F) Same as (A–C) but for presynaptic neurons exhibiting synchronized switches between a quiescent and an active state,

introducing higher order correlations between the neurons (D, bottom). In this case, the optimal response shows supralinear integration (E–F).

DOI: 10.7554/eLife.10056.010

The following figure supplement is available for figure 2:

Figure supplement 1. Definition of the statistical model describing presynaptic activities and illustration of the inference process in the model.

DOI: 10.7554/eLife.10056.011

Ujfalussy et al. eLife 2015;4:e10056. DOI: 10.7554/eLife.10056 7 of 51

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.10056.010
http://dx.doi.org/10.7554/eLife.10056.011
http://dx.doi.org/10.7554/eLife.10056


Miller et al., 2014). In this case, while observing a few spikes was consistent with random membrane

potential fluctuations within the quiescent state, thus only warranting a small response, further spikes

suggested that the presynaptic population was in the active state now and thus the response should

be larger, leading to supralinear integration (Figure 2F).

Note, that nonlinearities in the optimal postsynaptic response needed not simply compensate for

the nonlinearities in the presynaptic spike generation process, as captured by PðsjuÞ, but they criti-

cally depended on the presynaptic correlations, as captured by PðuÞ. Indeed, in Figures 1C, D and

2A–F, the same spiking nonlinearity was used and yet very different input integration was required

depending on the form of the presynaptic statistics: linear integration for uncorrelated inputs

(Figure 1B) and nonlinear integration for correlated inputs (Figure 1C), with sub- or supralinear inte-

gration being optimal depending on whether only second order (Figure 2A–C) or also higher order

correlations were present in the presynaptic population (Figure 2D–F). Moreover, optimal input inte-

gration remained nonlinear even if the postsynaptic neuron computed a function of the presynaptic

firing rates (rather than membrane potentials) which were linearly related to spikes (Figure 1—figure

supplement 1).

Nonlinear dendrites can approximate the optimal response
The nonlinear input integration seen in the optimal response strongly resembled dendritic nonlinear-

ities. Indeed, the basic biophysical mechanisms present in dendrites naturally yield nonlinearities

that are qualitatively similar to those of the optimal response: purely passive properties lead to sub-

linear integration (Koch, 1999), whereas locally generated dendritic spikes endow dendrites with

strong supralinearities (Nevian et al., 2007; Branco and Häusser, 2011). However, the full mathe-

matical implementation of the optimal response is excessively complex (Materials and methods) and

thus, there is unlikely to be a one-to-one mapping between the variables necessary for implementing

it and the biophysical quantities available in dendrites. Therefore, we sought to establish a formal

proof that dendritic-like dynamics can implement, even if approximately, the optimal response. For

this, we considered two limiting cases of our statistical model of presynaptic activities, PðuÞ and

PðsjuÞ, and compared the properties of the corresponding optimal response to a well-established

simplified model of nonlinear dendritic integration, using a combination of analytical and numerical

techniques.

First, we considered a limiting case in which the statistics of a large presynaptic population were

strongly dominated by the simultaneous switching of presynaptic neurons between a quiescent and

an active state (as shown in Figure 2D). In this limiting case we were able to show mathematically

(see Materials and methods) that a simple, biophysically-motivated, canonical model of nonlinear

dendritic integration (Poirazi and Mel, 2001) is able to produce responses that are near-identical to

the optimal response for any sequence of presynaptic spikes (Figure 3A, see also Figures 4C). In

this simple dendritic model (Figure 3A, inset; Equations 24–25), inputs within a branch are inte-

grated linearly and the local dendritic response is then obtained by transforming this linear combina-

tion through a sigmoidal nonlinearity, which is a hallmark of supralinear behavior in dendrites

(Poirazi et al., 2003b).

Second, we considered another limiting case in which the statistics of the presynaptic population

were fully characterized by second-order correlations (as shown in Figure 2A). In this case, the same

type of dendritic model, but with a sublinear input-output mapping, was able to approximate the

optimal response very closely. Although a closed-form solution for the optimal nonlinear mapping

could not be obtained in this case, it could be shown to be sublinear (Appendix), and was well

approximated by a sigmoidal nonlinearity parametrized to be dominantly saturating (Figures 3B and

Figure 3—figure supplement 1).

We also noted that it was the same type of sigmoidal nonlinearity which could implement supra-

linear and sublinear integration depending on the input regime (low background, synchronous

spikes: supralinear; high background, asynchronous spikes: sublinear integration, compare

Figure 3A and B, inset). This suggests that dendritic integration may adapt to systematic changes in

presynaptic statistics, such as those brought about by transitioning between the desynchronized and

synchronized states of the neocortex, or sharp waves and theta activity in the hippocampus, without

having to change the parameters of its nonlinearity (Borst et al., 2005) (Figure 3—figure supple-

ment 2). Indeed, Gasparini and Magee (2006) demonstrated that dendritic integration in hippo-

campal pyramidal cells was supralinear when inputs were highly synchronized (as they are during
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sharp waves), while integration was linear if the input was asynchronous (such as during theta

activity).

Nonlinear dendrites are computationally advantageous
While the foregoing analyzes proved that dendritic-like nonlinearities can closely approximate the

optimal response in certain limiting cases, they do not address directly whether having such nonli-

nearities in input integration is crucial for attaining near-optimal computational performance for

more realistic input statistics, or simpler forms of input integration could achieve similar computa-

tional power. To study this, we considered a scenario in which the presynaptic population consisted

of four ensembles, such that neurons belonging to each ensemble underwent synchronized switches

in their activity levels which were independent across the four ensembles, while there were also inde-

pendent fluctuations in the activity of individual presynaptic neurons which were comparable in mag-

nitude to those caused by these synchronized activity switches (Figure 4A). We then assessed the

performance of four different variants of a simple dendritic model relative to that of the optimal

response (Figure 4B): a model with linear dendrites and soma; a model in which only the soma was

nonlinear, and two models in which nonlinearities resided in the dendrites with either random or

clustered connectivity between the presynaptic assemblies and the dendritic branches.

We quantified the performance of each of the models based on how closely their output approxi-

mated the linear average of the analog presynaptic activities giving rise to the spike trains they were

integrating (Figure 4—figure supplement 1, Materials and methods). For a fair comparison, we

tuned the parameters of each variant of the dendritic model to obtain the best possible performance

with it (Figure 4C). The model with nonlinear dendrites and clustered connectivity had near-optimal

cross-validated performance (Figure 4D) while all other models performed significantly worse

(n = 20 runs, t = 51, t = 35, t = 20, and P<10�15, P<10�15, P<10�13; respectively from left to right

as shown in Figure 4D). This remained true when we varied the number and firing rate of presynap-

tic neurons over a wide range, and under a diverse set of qualitatively different population-level

Figure 3. A canonical model of dendritic integration approximates the optimal response. (A) The optimal response (black) and the response of a

canonical model of a dendritic branch, v (inset), with a sigmoidal nonlinearity (red, Equation 25) as functions of the linearly integrated input, vlin (inset,

Equation 24), when the presynaptic population exhibits synchronized switches between a quiescent and an active state, as in Figure 2D. Black dots

show optimal vs. linear postsynaptic response sampled at regular 2:5 ms intervals during a 3 s-long simulation of the presynaptic spike trains. (B)

Optimal response (black) approximated by the saturating part of the sigmoidal nonlinearity (blue) when the presynaptic population is fully characterized

by second-order correlations, as in Figure 2A. Inset shows the same data on a larger scale to reveal the sigmoidal nature of the underlying nonlinearity

(gray box indicates area shown in the main plot).

DOI: 10.7554/eLife.10056.012

The following figure supplements are available for figure 3:

Figure supplement 1. Reducing the optimal response with second order correlations to a canonical model of dendritic integration.

DOI: 10.7554/eLife.10056.013

Figure supplement 2. Adaptation without parameter change.

DOI: 10.7554/eLife.10056.014
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statistics, determining the dynamics of assembly switchings and within-assembly membrane poten-

tial correlations (Figure 4—figure supplement 2).

Taken together, these results demonstrate that the clustering of correlated inputs together with

nonlinearities akin to those found in dendrites is necessary to achieve optimal estimation perfor-

mance in the face of presynaptic correlations. However, in order to be tractable, our dendritic model

Figure 4. A simple nonlinear dendritic model closely approximates the optimal response for realistic input patterns. (A) Presynaptic spiking activity

matching the statistics observed during hippocampal sharp waves. Spike trains (rows) belonging to four different assemblies are shown (colors), gray

shading indicates assembly activations. (B) Different variants of the dendritic model, parts colored in yellow, orange, and red highlight the differences

between successive variants (see text for details). (C) Estimating the mean of the presynaptic membrane potentials based on the observed spiking

pattern (shown in A) by the optimal response (black) compared to the linear (dotted), somatic (yellow), random (orange) and clustered (red) models. (D)

Performance of the four model variants compared to that of the optimal response. Gray lines show individual runs, squares show mean�s.d.

Performance is normalized such that 0 is obtained by predicting only the time-average of the signal, and 1 means perfect prediction attainable only

with infinitely high presynaptic rates (Materials and methods).

DOI: 10.7554/eLife.10056.015

The following figure supplements are available for figure 4:

Figure supplement 1. Responses of different variants of the dendritic model compared to the true signal.

DOI: 10.7554/eLife.10056.016

Figure supplement 2. Performance of different neuron models over a wide range of input statistics.

DOI: 10.7554/eLife.10056.017
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was mathematically simplified and, as a result, only qualitatively reproduced the nonlinearities of real

dendrites. Thus, we directly compared experimentally recorded responses in dendrites to the opti-

mal response.

Nonlinear integration in cortical neurons is matched to their input
statistics
A crucial prediction of our theory is that dendritic nonlinearities act to achieve near-optimal

responses in a way that the form of the nonlinearity is specifically matched to the long-run statistics

of the presynaptic population. We tested this prediction in experiments in which two different types

of cortical pyramidal neurons, from layer 2/3 of the neocortex (Figure 5A–E) and from area CA3 of

the hippocampus (Figure 5F–J), received patterned dendritic stimulation using two-photon gluta-

mate uncaging, and compared their subthreshold somatic responses with the optimal responses pre-

dicted by the theory.

For generating our predictions of the optimal response in these two cell types, we fitted the

parameters describing presynaptic statistics in our model, PðuÞ and PðsjuÞ, to the statistical patterns

in the activity of their respective presynaptic populations. For neocortical pyramidal cells, we fitted

in vivo data available on the membrane potential fluctuations of layer 2/3 pyramidal cell-pairs in the

barrel cortex during quiet wakefulness (Gentet et al., 2010; Crochet et al., 2011) (NC, Figure 5A,

Table 2). For hippocampal pyramidal cells, we fitted presynaptic statistics to membrane potential

fluctuations (Ylinen et al., 1995; English et al., 2014) and to multineuron spiking patterns of hippo-

campal pyramidal cells during sharp wave activity (Csicsvari et al., 1999; 2000) (HP, Figure 5F,

Table 3). Due to the limitations of available hippocampal data sets, extracellular rather than intracel-

lular data was used for fitting correlations. The motivation for our choice of the particular neocortical

and hippocampal states used for fitting presynaptic statistics was two-fold. First, the general network

state of the slice preparations in which we tested dendritic integration was likely most analogous to

these states (A Gulyás, personal communication; see also Karlocai et al., 2014; Schlingloff et al.,

2014), characterized by relatively suppressed neural excitability due to low levels of cholinergic

modulation (Harris and Thiele, 2011; Eggermann et al., 2014). Second, the stimulation protocol

used in our study (short bursts of synaptic stimuli following longer silent periods) was also most con-

sistent with population activity during hippocampal sharp waves and quiet wakefulness in the cortex.

In order to capture variability across the cells we recorded from, the parameters related to postsyn-

aptic dendritic filtering (amplitude and decay of the response to a single stimulation, and the size of

the dendritic subunit, Figure 5—figure supplement 1B-C) were tuned for the individual dendrites.

Importantly, the parameters describing presynaptic statistics were fitted without regard to our den-

dritic experimental data, thus allowing a strong test of our predictions about dendritic integration

(see Materials and methods).

We found that the non-linear integration of individual spike patterns in cortical neurons was

remarkably well fit by the optimal response when it was tuned to the correct presynaptic statistics

(Figure 5C,H). The systematic dependence of response amplitudes on the inter-stimulus interval (ISI)

in individual cells (Figure 5D,I) was also well predicted by the optimal response. We quantified the

quality of match between the predicted and experimentally recorded time course of responses

across a population of n = 6 (neocortex) and n = 6 (hippocampus) dendrites under a range of condi-

tions varying ISI or the number of stimuli, and found that the precision of our predictions was not

statistically different from that expected from the inherent variability of responses in individual den-

drites (Figure 5E,J; neocortex: t = 0.2, P = 0.85; hippocampus: t = 1.85, P = 0.12). In contrast,

when the optimal response was tuned to unrealistic presynaptic statistics characterized purely by

second-order correlations (cor2), or by a lack of any correlations implying statistically independent

presynaptic firing (ind), the quality of fits became significantly worse (Figure 5E,J; neocortex:

t = �4.6, P = 0.006 for cor2, and t = �4.9, P = 0.004 for ind; hippocampus: t = �4, P = 0.01 for

cor2, and t = �4.9, P = 0.004 for ind).

Moreover, using realistic presynaptic statistics, but matching hippocampal rather than neocortical

activities, also resulted in significantly worse fits for neocortical responses (Figures 5E; t= �3.6,

P = 0.02). The converse was not observed in the case of hippocampal neurons (Figures 5J; t= 0.43,

P = 0.68). This might be because hippocampal neurons also receive neocortical inputs (albeit on

their apical not basal dendrites) that show similar population activity patterns to the ones we

matched here for the neocortical cells (Isomura et al., 2006), while the primary sensory cortical
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Figure 5. Nonlinear dendritic integration is matched to presynaptic input statistics. (A) Sample membrane potential fluctuations (left, adapted from

Gentet et al., 2010) and multineuron spiking patterns (right, adapted from Ji and Wilson, 2007) recorded from the neocortex (top), and matched in

the model (bottom, see also Tables 1–3). (B) Two-photon image of a neocortical layer 2/3 pyramidal cell, numbers indicate individual dendritic spines

stimulated in the experiment. (C) Responses to trains of seven stimuli using different inter-stimulus intervals (ISI, shown below traces) recorded in the

cell shown in (B) (black; mean�s.d.) and predicted by the optimal response tuned to the presynaptic statistics shown in A (red). Parameters related to

postsynaptic dendritic filtering were tuned for the specific dendrite ( Figure 5—figure supplement 1B–C). (D) Dependence of response amplitudes on

ISI in the same dendrite shown in B-C (squares), and as predicted by the optimal response (filled circles) or linear integration (empty circles). (E)

Average error of fitting dendritic recordings across all dendrites and conditions using the optimal response tuned to different presynaptic statistics (NC,

HP, cor2, ind; see text for details) compared to within-data variability (var). Gray lines show individual dendrites. Rightmost bar (NC-AP5) shows fit using

NC presynaptic statistics to responses obtained after pharmacological blockade of NMDA receptor activation. (F–J) Same as (A–E) for presynaptic

patterns characterized by hippocampal sharp waves (F) and recordings from hippocampal CA3 pyramidal cells (H–J) when stimulating synapses on its

basal dendrites (G). In vivo data in (F) was adapted from (Ylinen et al., 1995) (left, membrane potential traces, not simultaneously recorded) and

(O’Neill et al., 2006) (right, multineuron spike trains). Error bars show s.e.m.

DOI: 10.7554/eLife.10056.018

The following figure supplements are available for figure 5:

Figure supplement 1. Best fit parameters for fitting dendritic responses.

Figure 5 continued on next page
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pyramidal cells we recorded from do not receive direct input from the hippocampus. Nevertheless,

when we analyzed the quality of fit between our predictions and recorded responses in hippocampal

and neocortical data together, we found a small, but significant interaction between the source of

the input statistics (neocortex or hippocampus) and the location of the postsynaptic neurons

(ANOVA F = 5, P < 0.05). This suggests that dendritic nonlinearities in cortical pyramidal neurons

are specifically tuned to the dynamics of their presynaptic cortical ensembles. Furthermore, the

blockade of NMDA receptor activation by AP5 resulted in dendritic responses that afforded substan-

tially poorer fits by the model, even after refitting the postsynaptic parameters (Figure 5E,J, AP5).

This indicated that the fine tuning of dendritic nonlinearities to input statistics relied on the action of

NMDA receptors.

As dendrites in both of our cortical cell types integrated inputs supralinearly, as a further control,

we analyzed similar data available from cerebellar stellate cell dendrites, which are known to inte-

grate their inputs sublinearly (Abrahamsson et al., 2012) (Figure 5—figure supplement 2). In this

case, we fitted the statistics of individual presynaptic cells to those of cerebellar granule cells. The

correlations between these cells are less known, but we found that assuming simple second-order

correlations made the optimal response a close match to dendritic responses. In contrast, the hippo-

campal- or neocortical-like statistics that were crucial for matching responses in cortical dendrites

(Figure 5D,H) resulted in a substantially poorer fit in this cerebellar cell type. This demonstrates a

double dissociation in the matching of cortical and subcortical neuron types to cortical and non-cor-

tical input statistics.

Figure 5 continued

DOI: 10.7554/eLife.10056.019

Figure supplement 2. Dendritic integration in cerebellar stellate cells is not predicted by cortical presynaptic statistics.

DOI: 10.7554/eLife.10056.020

Table 1. Parameters used in Figures 1–5 of the main paper (see also Tables 2–3). 
� (
þ) is the rate of switching from the active to

the quiescent (from the quiescent to the active) state. The resting potential corresponding to the active and quiescent states is u and

�u, respectively. Sii (Sij) is the posterior variance (covariance) of the presynaptic membrane potential fluctuations in a given state

where S ¼ Qt
2
. trefr is the length of the refractory period and prel is the baseline transmission probability in these synapses (13, 49).

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

parameter unit B,C A,B C,D A B A-D ind cor2 NC HP


� Hz 10 – 10 10 – 10 – – 10 10


þ Hz 10 – 0.27 0.67 – 0.67 – – 4 0.027

u mV 2.4 0 2.3 2.3 0 2.3 0 0 10 2.3

t ms 20 20 20 20 20 20 20 20 20 20

Sii mV2 1 16 4 1 1 1 1 1 10 1

Sij 8i 6¼ j mV2 0 0.5 0.5 0 0.5 0 0 * 5 0.5

g Hz 1 1 1 5.3 0.5 5 0.5 0.5 1 2

b mV�1 1 0.4 0.4 0.5 0.4 0.4 1 2 0.1 0.6

trefr ms 3 3 3 1 3 1 3 3 3 3

prel – 1 1 1 1 1 1 1 1 0.5 0.2

N – 20 70 20 10 10 10 +0† +20† * *

tpost ms 0 10 10 0 0 0 * * * *

wi – 1=N 1=N 1=N 1=N 1=N 1=N * * * *

*These parameters were fitted to experimentally recorded dendritic responses, see Figure 5—figure supplement 1. †The numbers 0 and 20 indicated

here are in addition to the number of stimulated synaptic sites in the experiment. For the ind model, this number does not affect the predictions, for

the cor2 model its effects could phenomenologically be incorporated into which we chose to fit instead.

DOI: 10.7554/eLife.10056.007
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Discussion
We established a functional link between the statistics of the synaptic inputs impinging on the den-

dritic tree of a neuron and the way those inputs are integrated within the dendritic tree. We first

demonstrated that efficient computation in spiking circuits requires nonlinear input integration if the

activities of the neurons are correlated and that the structure of the presynaptic correlations deter-

mines the form of the optimal input integration. Second, we showed that the optimal response can

be efficiently approximated by a canonical biophysically-motivated model of dendritic signal proc-

essing both for linearly correlated inputs and for cell-assembly dynamics. Third, we found that non-

linear dendrites with synaptic clustering carry significant benefits for decoding richly structured

presynaptic spike trains. Finally, in vitro measurements of dendritic integration in two different types

of cortical pyramidal neurons yielded postsynaptic responses that closely matched those predicted

to be optimal given the in vivo input statistics of those particular cell types. These results suggest

that nonlinear dendrites are essential to decode complex spatio-temporal spike patterns and thus

play an important role in network-level computations in neural circuits.

Biophysical substrate
The central insight of our theory is the relationship between presynaptic statistics and postsynaptic

response, formalized as the optimal response. The optimal response can be expressed as a set of

nonlinear differential equations that requires storing and continuously updating ~N2 variables within

the dendritic tree, where N is the number of synapses (Materials and methods). Thus, it is unlikely to

be implemented by the postsynaptic neuron as such. Consequently, to demonstrate the biophysical

feasibility of our theory, we derived a simple approximation to the optimal response that performs

about equally well using just a few postsynaptic variables and that corresponds to a canonical

descriptive model of dendritic integration (Poirazi et al., 2003; Poirazi et al., 2003b).

Table 2. Features of neocortical population activity during quiet wakefulness. Parameters of the

model are given in column NC of Table 1.

Data Model (NC) Reference

duration of active states 130 ms 100 ms Gentet et al. (2010)

duration of quiescent states 200 ms 250 ms Gentet et al. (2010)

rþ, firing rate during active states 2.5 Hz 2.86 Hz Gentet et al. (2010)

r�, firing rate during quiescent states �1/3 Hz 0.39 Hz Gentet et al. (2010)

2u, depolarisation during active states 20 mV 20 mV Gentet et al. (2010)

time constant 20 ms 20 ms Poulet and Petersen (2008)

DOI: 10.7554/eLife.10056.008

Table 3. Features of hippocampal population activity during sharp wave-ripple states. Parameters of the model are given in column

HP of Table 1A recent intracellular study (English et al., 2014) recording from CA1 neurons in awake mice found parameters similar

to our previous estimates. Using the parameters found in that study – rþ ¼ 12:8 Hz, r� ¼ 2:85 Hz (Table 1 of English et al., 2014),

2u ¼ 5 mV and Sii ¼ 4 mV2 (Figure 3A of English et al., 2014) yielding g ¼ 5 Hz and b ¼ 0:3 mV�1 – did not influence our results (not

shown).

Data Model (HP) Reference

activation rate of an ensemble � 0.25 Hz 0.027 Hz Grosmark et al. (2012); Pfeiffer and Foster (2013)

duration of SPWs 105 ms 100 ms Csicsvari et al. (2000)

rþ, firing rate during SPW 10 Hz 9.5 Hz Csicsvari et al. (2000)

r�, firing rate between SPWs 0.5 Hz 0.6 Hz Grosmark et al. (2012); Csicsvari et al. (2000)

2u, depolarisation during SPWs 0–10 mV 4.6 mV Ylinen et al. (1995)

time constant 8–22 ms 20 ms Epsztein et al. (2011)

DOI: 10.7554/eLife.10056.009
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We found that simple second order correlations between presynaptic neurons imply sublinear

integration which can be implemented by the saturating nonlinearity characteristic of passive den-

drites. Conversely, the biophysical substrate for the type of supralinear integration that was optimal

for state-switching dynamics likely involves NMDA receptors because the particular dendritic nonli-

nearites observed in the cortical cells in which we tested our theory are known to be mediated pri-

marily through NMDA receptor activation (Branco et al., 2010; Makara and Magee, 2013;

Major et al., 2013). Indeed, we found that pharmacological inactivation of NMDA receptors abol-

ished the precise match between dendritic integration and presynaptic statistics in these neurons

(Figure 5). Moreover, the local plateau potentials generated by NMDA currents have been shown to

have graded response durations (Major et al., 2008), and the resulting nonlinearities could be con-

tinuously tuned between weaker and stronger forms (boosting and bistability, Major et al., 2013).

These properties make NMDA receptor mediated dendritic nonlinearities ideally suited for being

matched to presynaptic statistics, as the optimal response involves sustained dendritic depolarisa-

tions of varying duration (Figure 4) that depend parametrically on those statistics.

Input statistics and clustering
A central prediction of our theory that awaits confirmation is the existence of a tight relationship

between the structure of correlations in the activity of presynaptic cells and the morphological clus-

tering of their synapses on the postsynaptic dendrite. This is because our theory requires nonlinear

integration of inputs from neurons with statistically dependent activity, while spikes from indepen-

dent neurons need to be integrated linearly. Biophysical considerations suggest (Koch, 1999) and

experimental data supports (Polsky et al., 2004; Losonczy and Magee, 2006) that, when synchro-

nous, nearby inputs on the same dendritic branch are summed nonlinearly, whereas widely sepa-

rated inputs are combined linearly. Consequently, our theory predicts that the correlation structure

of the inputs will be mapped to the dendritic tree in a way that presynaptic neurons with strongly

correlated activities target nearby locations while independent neurons innervate distinct dendritic

subunits.

According to our theory, the kind of correlation relevant for determining synaptic clustering is the

‘marginal’ correlations between the membrane potentials of presynaptic neurons. Marginal correla-

tions include both signal and noise correlations (Averbeck et al., 2006) and thus can reach substan-

tial magnitudes even when noise correlations alone are small, as e.g. during desynchronized cortical

states (Renart et al., 2010), especially for neurons with overlapping receptive fields

(Froudarakis et al., 2014), and when measured between the membrane potentials of neurons rather

than their spike counts (Dorn and Ringach, 2003; de la Rocha et al., 2007; Poulet and Petersen,

2008).

At the level of different dendritic regions, the segregation of different input pathways along the

dendritic tree of hippocampal neurons supports this prediction (Witter et al., 1989;

Druckmann et al., 2014). At the level of individual synapses, the degree and the existence of clus-

tering among inputs showing correlated activity is currently debated. High resolution imaging

revealed subcellular topography of sensory inputs in the tadpole visual system (Bollmann and

Engert, 2009), clustered patterns of axonal activity in the parallel fibres that provide input to cere-

bellar Purkinje cells (Wilms and Häusser, 2015), and experience-driven synaptic clustering in the

barn owl auditory localization pathway (McBride et al., 2008). Furthermore, it has been demon-

strated that neighboring synapses are more likely to be coactive than synapses that are further away

from each other in developing hippocampal pyramidal cells (Kleindienst et al., 2011) as well as in

hippocampal cultures and in vivo in the barrel cortex during spontaneous activity (Takahashi et al.,

2012). These results thus suggest clustering of correlated inputs.

In contrast, an interspersion of differently tuned orientation-, frequency- or whisker-specific syn-

aptic inputs on the same dendritic segments was found in the mouse visual, auditory or somatosen-

sory cortex, respectively, thus challenging the prevalence of synaptic clustering (Jia et al., 2010;

Chen et al., 2011; Varga et al., 2011). However, in all these studies the stimuli used were non-natu-

ralistic and varied along a single stimulus dimension only (direction of drifting gratings, pitch of pure

tones, or the identity of the single whisker being stimulated), which may account for the apparent

lack of clustering. In particular, our theory predicts clustering based on the long-term statistical

dependencies between the responses of the presynaptic neurons for naturalistic inputs, which can

be quite poorly predicted from their tuning properties for single stimulus dimensions (Harris et al.,
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2003; Fiser et al., 2004). In contrast, the statistical dependencies relevant for our theory are well

represented by those found during spontaneous activity (Berkes et al., 2011). Indeed, studies find-

ing evidence in favor of synaptic clustering analyzed the structure of synaptic input to dendritic

branches during spontaneous network activity (McBride et al., 2008; Kleindienst et al., 2011;

Makino and Malinow, 2011; Takahashi et al., 2012). Thus, presynaptic correlations for naturalistic

stimulus sets may be predictive of synaptic clustering and providing more direct evidence for or

against such clustering will offer a crucial test of our theory.

Linear vs. nonlinear postsynaptic computations
Although, in general, we expect single-neuron computations to be nonlinear (Zador, 2000), and our

theory indeed applies to nonlinear computations (Figure 1—figure supplement 3), we assumed the

postsynaptic computation to be linear for matching experimental data. This choice was justified by

two reasons. First, it is difficult to determine, without making strong prior assumptions, what kind of

nonlinear function the neuron actually computes; and so the choice of any particular such function

would have been arbitrary. Note that even in relatively well-characterized cortical areas (such as the

visual cortex) it is unknown how much of the computationally relevant output of individual neurons

(such as orientation or direction selectivity) is brought about by specific nonlinearities in the input-

output transformations of these neurons, or by multiple steps of feed-forward and recurrent process-

ing carried out at various stages of the visual pathway between the retina and those neurons. More-

over, in some cases, even networks with linear dynamics can provide a remarkably close fit to

experimentally observed cortical population dynamics (Hennequin et al., 2014). This issue may be

best addressed in systems that are more specialized than the cortex so that there are well-supported

hypotheses about the particular nonlinear computations individual neurons need to perform, such as

the fly visual system (Single and Borst, 1998) or the mammalian and avian auditory brain stem

(Agmon-Snir et al., 1998). In order to test our theory in these systems, in vivo multineural data will

need to be collected from the afferent brain areas, preferably in the unanesthetized animal, for char-

acterising the relevant statistical properties of the presynaptic population to which dendritic nonli-

nearities are adapted according to our prediction.

Second, any nonlinear function can be approximated to high precision by a linear function over a

sufficiently limited input range. Currently available experimental techniques for systematically prob-

ing dendritic nonlinearities, including those used in our study, only provide data over such a very lim-

ited range (~0.1% of the number of excitatory inputs impinging a neuron, Megı́as et al., 2001).

Inputs in this small range do not sufficiently engage global nonlinearities brought about by active

somatic conductances or global events such as Ca2þ spikes. Thus, we could assume linear computa-

tion over this range without loss of generality (Figure 1—figure supplement 2). In fact, from this

perspective, it is a non-trivial phenomenon to account for on its own right that stimulating such a

small fraction of inputs already leads to observable nonlinearities in the postsynaptic dendrite. By

defining the computation to be linear, we could demonstrate that such strong dendritic nonlinear-

ities arise naturally in our theory, entirely due to the correlations in the prior input statistics, thus pro-

viding a functional account for this remarkable phenomenon.

Once patterned dendritic stimulation over a broader and more realistic range of inputs becomes

feasible, our theory will provide a principled method for dissecting the roles of presynaptic correla-

tions vs. genuine nonlinear computations in shaping dendritic nonlinearities. A sufficiently rich set of

such data will allow the fitting of presynaptic parameters, as we did here, followed by fitting postsyn-

aptic transfer functions to dendritic responses without having to make strong prior assumptions

about their (linear) nature.

Analog communication, stochastic synaptic transmission and short-term
synaptic plasticity
Our formalism was based on the assumption that cortical neurons only influence each other’s mem-

brane potentials via the action potentials they emit. While there exist other, more analog forms of

communication, such as the modulation of the effects of action potentials by subthreshold potentials

(Clark and Häusser, 2006), the propagation of voltage signals through gap junctions

(Vervaeke et al., 2012), and ephaptic interactions between nearby cells (Anastassiou et al., 2011),

these either require slow membrane potential dynamics, small distances between interacting cells,
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or large degrees of population synchrony, and are thus generally believed to have a supplementary

role beside spike-based communication (Sengupta et al., 2014). Note that our theory is self-consis-

tent even though it considers spiking only in the presynaptic population and not in the postsynaptic

neuron. This is because we assumed that the computationally relevant mapping is that between the

membrane potentials of the presynaptic neurons and the postsynaptic cell (Figure 1A, Equation 1),

and so, by induction, the spikes of the postsynaptic neuron will effect the mapping from its mem-

brane potential to those of its postsynaptic partners.

We also assumed that presynaptic spikes deterministically and uniformly impact the postsynaptic

response, and thus apparently neglected the stochasticity in synaptic transmission, and in particular

systematic variations in synaptic efficacy brought about by short-term synaptic plasticity. Neverthe-

less, these presynaptic features are compatible with our theory. The stochasticity of synaptic trans-

mission, due to a baseline level of synaptic failures, is straight-forward to incorporate in the model

by reducing the effective presynaptic firing rate, which can thus be interpreted as a ‘transmission

rate’ instead. In fact, we have already done this while matching hippocampal and neocortical presyn-

aptic statistics (Table 1).

Short-term synaptic plasticity, resulting in dynamical changes in synaptic efficacy as a function of

the recent spiking history of the presynaptic neuron, is not only a constraint in our framework, but as

we have shown in related work, it can act itself as an optimal estimator of the membrane potentials

of individual presynaptic neurons (Pfister et al., 2010). Thus, the effects of short-term plasticity can

be regarded as a special case of what can be expected from our optimal response: when presynaptic

neurons are statistically independent, spikes arriving at different synapses are integrated linearly,

and local nonlinearities acting at individual synapses suffice (Figure 1C, see also Materials and meth-

ods). However, the importance of nonlinear interactions between inputs from different presynaptic

neurons, brought about by dendritic nonlinearities, rapidly increases with the magnitude of presyn-

aptic correlations, especially in large populations (Figure 1D, see also Ujfalussy et al., 2011).

These considerations suggest that short-term synaptic plasticity and dendritic nonlinearities have

complementary roles in tuning the postsynaptic response to the statistics of the presynaptic popula-

tion along the orthogonal dimensions of time and space. The former is useful in the face of temporal

correlations private to individual presynaptic neurons (auto-correlations, e.g., brought about by

spike frequency adaptation, Pfister and Surace, 2014), while the latter is matched to spatio-tempo-

ral correlation patterns present across the presynaptic population.

Inhibitory neurons
We focused on the nonlinear integration of excitatory inputs in the dendritic tree of cortical neurons

that have been extensively studied and described over the past decades, giving rise to a strong

body of converging evidence as to their characteristics and mechanisms (Spruston, 2008). Recent

work studying the nonlinear interaction between inhibitory and excitatory inputs in active dendrites

(Gidon and Segev, 2012; Jadi et al., 2012; Müller et al., 2012; Wilson et al., 2012; Lovett-

Barron et al., 2012) demonstrated that local inhibition has a powerful control over the excitability of

the dendritic tree.

However, it is not yet clear whether these inhibitory inputs are directly involved in the computa-

tion performed by the circuit, just as excitatory neurons but with negative signs (Koch et al., 1982),

or, alternatively, they may have a more ancillary role in supporting computations carried out primar-

ily by excitatory neurons (Vogels et al., 2011).

Our theory can be extended to include both possibilities, by allowing inhibitory inputs to contrib-

ute to the computational function, fðuÞ, with negative weights, or by considering them as providing

auxiliary information about the common state of the excitatory presynaptic ensemble, especially

when this state is in the more suppressed regime. Indeed, our preliminary results suggest that such

an extension of our theory (Ujfalussy and Lengyel, 2013) successfully accounts for the interaction of

(excitatory) Schaffer collateral inputs with the feedforward inhibitory effects of the temporo-ammonic

pathway (Remondes and Schuman, 2002), likely mediated by interneurons delivering dendritic inhi-

bition (Dvorak-Carbone and Schuman, 1999).

In the present paper we focused on dendritic integration in pyramidal neurons because dendritic

nonlinearities have traditionally been more extensively characterized in this cell type, but our theory

equally applies to synaptic integration in other types of neurons, including inhibitory interneurons.

Therefore, our theory predicts a qualitative similarity of dendritic integration in different neuron
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types (i.e. interneurons versus principal cells) when they receive inputs from overlapping presynaptic

populations. Indeed, it has been recently found that inhibitory interneurons can exhibit dendritic

NMDA spikes under certain experimental circumstances (Katona et al., 2011; Chiovini et al., 2014)

in addition to standard sublinear integration. The differences between dendritic integration in excit-

atory and inhibitory neurons could be attributed to their different computational function, fðuÞ, or

differences in the specific presynaptic populations innervating them.

Adaptation of dendritic nonlinearities to presynaptic statistics
According to our theory, the optimal response depends on prior information about the input statis-

tics. Consequently, for dendritic processing to approximate the optimal response, this prior informa-

tion needs to be implicitly encoded in the form of the particular nonlinearity a dendrite expresses.

Therefore, our theory predicts an ongoing adaptation of dendritic nonlinearities to presynaptic firing

statistics across several time-scales.

First, there is a simple yet potent mechanism implicit in our theory that can ensure that a match

of dendritic integration to presynaptic statistics is maintained as those statistics are changing over

time. This is based on the observation that essentially instantaneous, albeit probably incomplete,

adaptation can occur even without specific changes in the integrative properties of dendrites per se,

simply due to the fact that a critical level of input synchrony is required to elicit dendritic spikes, and

so the same sigmoid-looking dendritic transfer function can be used as superlinear, linear, or sublin-

ear, depending on which part of its input range is being used (Figure 3—figure supplement 2).

Second, to match the more specific modulation of the statistics of presynaptic activities by global

cortical states (Crochet et al., 2011; Mizuseki and Buzsaki, 2014), dendritic integration may also

be modulated by these states. As different cortical states are typically accompanied by changes in

the neuromodulatory milieu (Hasselmo, 1995; Harris and Thiele, 2011), neuromodulators may be

the ideal substrates to ensure that dendritic integration also changes according to the current corti-

cal activity mode. This may provide a functional account of changes in the excitability of the dendritic

tree as dynamically regulated by acetylcholine and monoamines (Sjöström et al., 2008).

Third, experience-dependent synaptic plasticity can gradually change the statistics of the presyn-

aptic population activity implying that the optimal form of input integration should also change as a

function of experience. We propose that branch-specific forms of plasticity of dendritic excitability

(Losonczy et al., 2008; Makara et al., 2009; Müller et al., 2012) may have a functional role in

enabling dendrites to adjust the form of input integration to such slowly developing and long-lasting

changes in the statistics of their inputs.

Finally, whether inputs from two presynaptic cells are integrated linearly or nonlinearly in a den-

drite depends critically on the distance between their synapses within the dendritic tree

(Polsky et al., 2004; Losonczy and Magee, 2006). Our theory requires nonlinear integration of

inputs from neurons with statistically dependent activity, predicting a mapping of presynaptic corre-

lations on the postsynaptic dendritic tree. Local electrical and biochemical signals can drive synaptic

plasticity (Larkum and Nevian, 2008; Govindarajan et al., 2011; Winnubst et al., 2015) and rewir-

ing (DeBello, 2008) leading to synaptic clustering of correlated inputs along the dendritic tree

(Kleindienst et al., 2011; Takahashi et al., 2012).

A combination of all these mechanisms may be crucial for achieving and dynamically maintaining,

at the level of individual neurons, a detailed matching of dendritic nonlinearities to presynaptic sta-

tistics. Thus, our theory provides a novel framework for studying a range of phenomena regarding

the dynamical regulation of dendritic nonlinearities from the perspective of circuit-level

computations.

Materials and methods
Source code for reproducing the analyses and simulations presented in the paper as well as the

experimental data we used for testing our predictions are available online (https://bitbucket.org/

bbu20/optimdendr).

Computing the optimal response
In order to study the optimal form of input integration with realistic input statistics, we need to

make two important assumptions. First, we need to assume a particular algebraic form for the
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computation that a neuron performs. Second, we need to define what the relevant presynaptic sta-

tistics are, that is, the membrane potential and spiking dynamics of the presynaptic population under

naturalistic in vivo circumstances. Given these two assumptions, the theory uniquely defines the opti-

mal response of a neuron to any input pattern. The optimal response has qualitatively similar proper-

ties whether computations are defined as mappings between pre- or postsynaptic membrane

potentials or firing rates (Figure 1—figure supplement 1).

Throughout the paper the term input refers to the spatio-temporal spiking pattern impinging the

neuron while the response of a neuron refers to its (subthreshold) somatic membrane potential (or

firing rate, see below). All parameters used in the paper are given in Table 1 or in the caption of the

corresponding Figure.

Postsynaptic computation
We assumed the postsynaptic computation to be linear, i.e. the dynamics of the postsynaptic mem-

brane potential vðtÞ evolves according to a weighted sum of the presynaptic membrane potential

values, uðtÞ (cf. Equation 1):

tpost _vðtÞ ¼�vðtÞþ
XN

i¼1

wiuiðtÞ (5)

where tpost is the time constant of the postsynaptic neuron, N is the number of presynaptic neurons,

and wi is the computational weight assigned to presynaptic neuron i. As the postsynaptic neuron

cannot access presynaptic membrane potentials, u, directly only the spikes the presynaptic cells

emit, s, (Figure 1, Equation 2), the optimal response (that minimizes mean squared error) is the

expectation of Equation 5 under the posterior distribution of the presynaptic membrane potential

at time t, uðtÞ given the history of presynaptic spiking up to that time, sð0 : tÞ (cf. Equation 3):

tpost ~v
_
ðtÞ ¼�~vðtÞþ

ð

PðuðtÞjsð0 : tÞÞ
XN

i¼1

wiuiðtÞ

" #

duðtÞ (6)

Throughout the paper we call the output of Equation 6 the optimal response and compare its

behavior to input integration in the dendrites of cortical pyramidal cells.

Table 1 shows the values of the parameters in Equation 5 (N, tpost, and wi) used in the simula-

tions. In short, to illustrate the contributions of inference to Equation 6 (the term including the inte-

gral), we used tpost ¼ 0 in Figures 1, 3 and 4 as well as in all Supplemental Figures, unless otherwise

stated. We used tpost ¼ 10 ms in Figure 2 to aid comparison with experimental data and fitted tpost

to data for Figure 5. Throughout the paper we used wi ¼ 1=N, except in Figure 5 where we fit N

and wi ¼ w jointly to the data.

Presynaptic statistics

Computing the posterior, P
�

uðtÞjsð0 : tÞ
�

in Equation 6 requires a model for the joint membrane

potential and spiking statistics of the presynaptic population, Pðu; sÞ (see also Equation 4). For

mathematical convenience, we present some of our results below in discrete time with time step size

dt, which we will eventually take to zero to derive time-continuous equations. We distinguish discrete

and continuous time results by using time as an index versus as an argument of the corresponding

time-dependent quantities, e.g. ut vs. uðtÞ.

We describe the joint statistics of presynaptic membrane potentials and spikes by a hierarchical

generative model that has three layers of variables (Figure 2—figure supplement 1A,B). The global

state of the system is described by a single binary variable, z that switches between a quiescent (�)

and an active (þ) state following first-order Markovian dynamics (see Appendix for the extension to

an arbitrary number of states). The transition rates to the active and quiescent states are given by


þ and 
�, respectively.

The dynamics of (subthreshold) membrane potentials u are modeled as a multivariate Ornstein-

Uhlenbeck (mOU) process, which yields random walk-like behavior that (unlike simple Brownian

motion) decays exponentially towards a baseline defined by the resting potential u, which in turn

depends on the momentary global state of the system, zt:
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Pðutjut�dt; ztÞ¼
4
N ut; 1�

dt

t

� �

ut�dt þ
dt

t
uðztÞ;dtQ

� �

(7)

where t is the presynaptic time constant of the exponential decay, and Q is the ‘process noise’

covariance matrix determining the variance of individual membrane potentials (together with t) and,

importantly, also the correlations between presynaptic neurons. It is straightforward to extend the

model by also making these parameters state- (or in fact, neuron-) dependent.

Note that both the state switching and mOU components of this model introduce both spatial

and temporal statistical dependencies in the membrane potentials and spike trains of presynaptic

cells. In the rest of this paper, we informally refer to any statistical dependency (second or higher

order) as ‘correlation’, and we write ‘auto-correlation’ when we refer to the correlations between the

membrane potential (firing rate) values of the same neuron at different times, and ‘cross-correlation’

when referring to the correlation between the activities of two different cells (at the same time, or at

different times). Also note that temporal and spatial correlations can not be studied in complete iso-

lation in the case of smoothly varying signals, such as membrane potentials, as the cross-correlation

between the activity of two presynaptic neurons always has a characteristic temporal profile. While it

is possible to consider a presynaptic neuronal population completely lacking spatial correlations (i.e.

independent presynaptic neurons, as in Figure 1C), having a population with only spatial but not

temporal correlations would require the membrane potentials of the individual neurons to be tem-

porally white noise – which is so far removed from reality that we did not consider this case worth

pursuing.

More specifically, the timescale of temporal correlations (auto-correlations) in the model depend

on the transition rates of the switching component, 
þ and 
�, and the presynaptic time constant of

the mOU component, t, such that cells are auto-correlated as long as t, 
�1
þ , and 
�1

� > 0. Spatial

correlation (cross-correlations between different presynaptic neurons) also emerge from both com-

ponents. First, the pairs of presynaptic neurons corresponding to the non-zero off-diagonal elements

of Q matrix of the mOU component become correlated. Second, synchronous state transitions dur-

ing state switching in the presynaptic ensemble introduce positive correlations. Importantly, in both

the temporal and spatial domains, while the mOU process can only introduce second-order correla-

tions (i.e. it makes membrane potentials be distributed according to a multivariate normal), the

switching process introduces higher order correlations (such that membrane potentials are not nor-

mally distributed any more). These higher order correlations are stronger when the effect of state-

switching is large relative to the membrane potential fluctuations within a single state.

Finally, instead of modeling the detailed dynamics of action potential generation, we model spik-

ing phenomenologically by introducing a single discrete variable, si;t, for each presynaptic neuron

that represents the number of spikes neuron i fires in time step t. (Note that in the limit dt�!0 this

variable becomes binary, i.e. there can never be more than one spike fired in a dt time window.)

Spiking in each cell only depends on the membrane potential of that cell, and follows an inhomoge-

neous Poisson process with the firing rate, r, being an exponential function of the membrane poten-

tial (Gerstner and Kistler, 2002):

PðstjutÞ¼
4
Y

i

Poissonðsi;t;dt ri;tÞ; with ri;t ¼ gebui;t (8)

where b describes how deterministically the cell switches to firing at threshold (u ¼ 0) and g is the fir-

ing rate at that threshold. We modeled the absolute refractory period by not allowing the genera-

tion of spikes (i.e. setting ri;t ¼ 0) within a time window of length trefr following each spike in a cell,

regardless of its membrane potential.

The parameters of the presynaptic statistics used in the paper are given in Table 1. Examples of

neural dynamics generated by the model are shown in Figures 1, 2, 4, and 5.

Inference and the optimal response
Our goal was to infer the posterior distribution of the membrane potential based on the spiking pat-

tern observed up to time t, Pðutjs0:tÞ.
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We first show that linear dendritic integration is sufficient when presynaptic neurons are statisti-

cally independent. We start by noting that by marginalising out the past membrane potential history

of the presynaptic cells and using Bayes’ rule, the posterior can always be written as

Pðutjs0:tÞ ¼

ð

Pðu0:tjs0:tÞdu0:t�dt /

ð

Pðs0:tju0:tÞ Pðu0:tÞdu0:t�dt (9)

and as the spikes of each neuron are independent from all other neurons conditioned on its own

membrane potential history (Equation 8), this can be rewritten as

P ðutjs0:tÞ

ð
Y

i

P ðsi;0:tjui;0:tÞ P ðu0:tÞdui;0:t�dt (10)

In the special case when we assume that presynaptic neurons are statistically independent, i.e.

their prior factorizes Pðu0:tÞ ¼
Q

iPðui;0:tÞ, the posterior also becomes factorised

Pðutjs0:tÞ /
Y

i

ð

Pðsi;0:tjui;0:tÞ Pðui;0:tÞdui;0:t�dt (11)

¼
Y

i

Pðui;tjsi;0:tÞ (12)

which in continuous time reads simply as

P
�

uðtÞjsð0 : tÞ
�

¼
Y

i

P
�

uiðtÞjsið0 : tÞ
�

(13)

Thus, taking our usual assumption that the postsynaptic computation is linear (Equation 5), the

optimal response in Equation 6 can be written as

tpost ~v
_
ðtÞ ¼�~vðtÞþ

XN

i¼1

wi

ð

uiðtÞ P
�

uiðtÞjsið0 : tÞ
�

duiðtÞ (14)

indicating that integration of inputs from different neurons is linear in this case (it is a weighted sum

of terms each depending on just a single presynaptic neuron). However, even in this case, note that

integration of input spikes from the same presynaptic neuron, i.e. the result of the integral over each

uiðtÞ as a function of sið0 : tÞ, is still nonlinear in general (Pfister et al., 2010). Indeed, Equation 14

including these local nonlinearties was used to compute the linear response in Figure 1C–D.

In the general case inference can be performed using filtering such that in each step we update

the inferred state of the hidden variables, zt and ut, using information from two different sources:

the likelihood of emitting a particular spiking pattern (observation) and the dynamics of the hidden

variables combined with the previous estimate (innovation):

Pðut ¼ u; zt ¼ zjs0:tÞ / Pðst¼ sjut¼ uÞ
X

z0

Pðzt ¼ zjzt�dt ¼ z0Þ �

�
Ð
du0 Pðut ¼ ujut�dt ¼ u0; zt ¼ zÞ Pðut�dt¼u0;zt�dt¼z0js0:t�dtÞ

(15)

where the likelihood PðstjutÞ is defined by Equation 8, the dynamics of the global state variable

Pðztjzt�dtÞ is first order, Markovian (see above) and the state-dependent membrane potential dynam-

ics Pðutjut�dt; ztÞ is given by Equation 7. Equation 15 thus defines a mapping between the posterior

distribution of the hidden variables in the previous time step (last term on RHS) and their current dis-

tribution (LHS). The posterior over membrane potentials can then be obtained by simply marginalis-

ing out the state variable:

Pðutjs0:tÞ ¼
X

z

Pðut; zt ¼ zjs0:tÞ (16)

For the following, it is useful to represent the posterior as a product of two terms:

Pðut ¼ u; zt ¼ zjs0:tÞ ¼Pðzt ¼ zjs0:tÞ Pðut ¼ ujzt ¼ z;s0:tÞ (17)

As the state variable is binary, its posterior is a Bernoulli distribution which we parametrize by z,

without loss of generality:
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Pðzt ¼þjs0:tÞ¼
4
zt (18)

However, in general, the posterior of the membrane potentials conditioned on the current state,

zt, can be arbitrarily complex. To allow an analytical reduction of the inference process, we adopted

an assumed density filtering approach in which this distribution is moment-matched in each time

step by a multivariate normal distribution which is thus described by two (sets of) parameters, its

mean, �
ðzÞ
t , and covariance, S

ðzÞ
t :

Pðut ¼ ujzt ¼þ;s0:tÞ ’
4
Nðu;�þ

t ; S
þ
t Þ (19)

with the analogous equation for the posterior of ut conditioned on zt being in the � state.

One advantage of this parametric approach is that inference (filtering) can be implemented by

updating only the parameters describing the (approximate) posterior distribution (Equations 18–

19): zt, �
ðzÞ
t , and S

ðzÞ
t . In the Appendix we derive an analytical form for these parameter updates

resulting in the following set of differential equations:

z
�
¼�zð1� zÞðgþ �g�Þþ zð1� zÞ sðtÞThGi�1ðgþ�g�Þþ ð1� zÞ 
þ � z
� (20)

�þ
_

¼
�þ ��þ

t
þb S

þ
�

sðtÞ�gþ
�

þ
1� z

z

þð�

� ��þÞ (21)

Sþ
_

¼
2

t

t

2
Q�Sþ

� �

�b2Sþ
GþSþ þ

1� z

z

þ½ðS

� �SþÞþ ð����þÞð����þÞT� (22)

where gðzÞ (GðzÞ) is a state-dependent vector (diagonal matrix) of which the elements g
ðzÞ
i ¼ G

ðzÞ
ii ¼

geb�
ðzÞ
i þ1

2
b2S

ðzÞ
ii are the expected firing rates of the neurons in a given state, g ðzÞ ¼

P

ig
ðzÞ
i is the

expected total population firing rate in state z, and hGi ¼ z Gþ þ ð1� zÞ G� is the expected firing

rate of the cells averaged across states. In these equations, the spike trains of the presynaptic neu-

rons are represented by the sum of Dirac-delta functions in continuous time and are denoted by

sðtÞ, to be distinguished from its discrete time analog, st, such that sðtÞ ¼ limdt�!0 st=dt (see

Equation A62 in the Appendix). The differential equations for the conditional mean and variance in

the � state, _�� and _S
�
, are analogous to Equations 21–22. The absolute refractory period is taken

into account by setting gi ¼ Gii ¼ 0 after each observed spike for the duration of the refractory

period, trefr, thus omitting the effect of the likelihood (terms containing gðzÞ or GðzÞ) from Equa-

tions 20–22.

The first term in Equation 20 captures the decay in zt that is proportional to the difference in the

state conditional firing rates in the absence of presynaptic spikes; the second term expresses the

instantaneous change in zt after observing a spike, proportional to both the state estimation uncer-

tainty, zð1� zÞ, and the differences in the conditional firing rates (gþ � g�); and the last term cap-

tures the decay of zt to its steady state in the absence of observations. The filtering equations for

the conditional mean and covariance (Equations 21–22) are each composed of three terms: the first

term expresses the decay of the variable towards its baseline in the absence of observations; the

second term captures the effect of the current observation (i.e. the presence or absence of a spike)

on the variable; and the third term describes the changes in the variable caused by potential state

transitions. This can be viewed an extension and generalization of earlier work deriving the equiva-

lents of Equations 21–22 for the special case of a single neuron without state-switching dynamics

(Pfister et al., 2010).

Another advantage of the parametrization of the posterior we chose is that computing the opti-

mal response, i.e. the posterior expectation of the simple linear functions that we consider in this

paper, becomes straightforward (cf. Equation 6):

tpost ~v
_

ðtÞ ¼�~vðtÞþ
X

i

wi

�

zðtÞ �þ
i ðtÞþ

�

1� zðtÞÞ ��
i ðtÞ

�

(23)

In order to verify the assumed density filtering approximations used above we numerically inte-

grated the system of differential equations (Equations 20–22) using the software package R (R Core

Team, 2012; Soetaert et al., 2010) and compared the results with those obtained using standard
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particle filters (Doucet et al., 2001). In these simulations we used 500,000 particles to evaluate

Equation 15 with 1 neuron and 2 states. Figure 2—figure supplement 1C shows that the results of

assumed density filtering are essentially identical to those of particle filtering, confirming that the

approximations we used were valid.

Dendritic approximation of the optimal response
Here we first describe a simple canonical model of dendritic integration following Poirazi and Mel

(Poirazi and Mel, 2001), and then show that it provides an approximation to the optimal response

(Equations 20–23) in the limiting case in which presynaptic dynamics are dominated by simultaneous

switching between a quiescent and an active state. In this simple dendritic model, inputs within a

branch are integrated linearly:

_vlin ¼�AvlinþBsðtÞ�C (24)

where vlin is the variable linearly integrating inputs with weight B, dendritic time constant 1=A and

steady state value �C=A (in the absence of spikes), and sðtÞ ¼
P

isiðtÞ denotes the spike train of

presynaptic neurons, collecting all spikes from the presynaptic population. The actual dendritic

response, vden, is then given by mapping this linear response through a sigmoidal nonlinearity, scaled

to be between vmin and vmax (Figure 3A, inset):

vdenðtÞ ¼ vmin þðvmax � vminÞ
1

1þ e�vlinðtÞ
(25)

To demonstrate that this reduced model of dendritic integration closely approximates the opti-

mal response, we first note that under appropriate conditions (tpost is small, N is large, Q is diagonal,

and b is small relative to the diagonal elements of Q) the dynamics of the optimal response are dom-

inated by the state switching process (Equation 20; see Appendix). Thus, the optimal response

essentially follows the inference about the global state variable, z, up to linear rescaling and filtering:

~vðtÞ » u� þðuþ �u�Þ zðtÞ (26)

with uþ and u� respectively denoting the resting membrane potential in the active and quiescent

states. As Equation 26 is linear, all nonlinear interactions, corresponding to dendritic nonlinearities,

must be contained in the temporal dynamics of the posterior probability of this global state variable

being in the active state, zðtÞ, which can be expressed as

z
_

» zð1� zÞ½B sðtÞ�C� (27)

where constants B and C depend on the parameters of the presynaptic statistics (see Appendix).

Note that the fact that zð1� zÞ multiplies Equation 27 expresses the simple intuition that the size of

the update to z (the posterior probability of z ¼ þ) in response to incoming information (presence,

B term, or absence of a spike, C term) should be proportional to our current (posterior) uncertainty

about z; and since the posterior is a Bernoulli distribution, the uncertainty associated with it is simply

zð1� zÞ.

The solution of Equation 27 can be expressed in a form that is similar, albeit not identical (see

below), to the canonical model for dendritic integration (Equations 24–25). This form requires the

linear integration of incoming spikes

n
_
¼B sðtÞ�C (28)

and the temporal evolution of z is expressed as a sigmoidal function of the linearly integrated inputs

n:

zðtÞ ¼
1

1þ e�nðtÞ
(29)

Thus, dendrites with sigmoidal nonlinearity are near-optimal when their synaptic inputs switch

between a quiescent and an active state.

The main difference between the dendritic integrator and the optimal response is that the

dynamics of spike integration imply exponential decay towards a finite baseline in the former (there

is a negative term in Equation 24 which is scaled by vlin) and steady decrease towards negative
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infinity in the latter (the only negative term in Equation 28 is a constant, independent of n). This is

because the approximations we used for deriving Equation 27 were accurate only in the quasi-static

case, when the state switching dynamics are infinitely slow. In this case, remote and more recent

observations should have identical effects on the current value of z as they all correspond to the

same underlying state. In the more general case, when state switching occurs with non-zero proba-

bility, more remote observations likely correspond to a state which has changed in the meantime,

and should thus count for less, such that their effect on the current value of z should decay with time

– leading to leaky integration of incoming spikes, similar to that in Equation 24.

Simplified neuron models
To compare quantitatively the response of the linear and nonlinear dendrites to the optimal

response in a computational task using realistic input statistics, we divided the presynaptic popula-

tion into four groups (cell assemblies), where neurons within each group were statistically dependent

(either through simple second-order correlations, Figure 4—figure supplement 2, or through shar-

ing a common state variable, Figure 4 and Figure 4—figure supplement 2) while neurons from dif-

ferent groups were independent (Figure 4A). In this task we used 4 different versions of the

simplified neuron model (Figure 4B):

. The linear model responded to all incoming spikes with an identical postsynaptic potential
(PSPs) characterized by its amplitude (w‘), decay time constant (t‘) and the resting potential
(v‘):

_~v‘ðtÞ ¼
v‘ � ~v‘

t‘
þw‘ sðtÞ (30)

where sðtÞ is the total incoming spike train (as before). This model had three parameters.

. The model with a somatic nonlinearity had linear dendrites but a nonlinear soma. Motivated
by our analytical calculations we used a sigmoidal nonlinearity:

~vgðtÞ ¼
ag

1þ e�bgð~v‘ðtÞ��gÞ
� vg (31)

where we computed ~v‘ðtÞ as defined in Equation 30 above with w‘ ¼ 1 and v‘ ¼ 0 (as these parame-

ters were interchangeable with bg and �g). This model had five free parameters.

. The random dendrites model had four nonlinear dendritic subunits, each receiving inputs from
a unique set of 10 neurons randomly selected from the four presynaptic assemblies, and inte-
grating these inputs using a sigmoidal nonlinearity (Equations 30-31). Each subunit had its
own set of five parameters, and the outputs of the subunits were simply averaged in the soma
(without loss of generality), resulting in 20 parameters in total.

. The clustered dendrites model was similar to the random dendrites model, with the important
difference that neurons in each cell assembly selectively targeted a single nonlinear dendritic
branch. Since the presynaptic statistics was the same for all four branches, we constrained the
parameters of the four dendritic subunits to be identical and this model had only five parame-
ters (the same performance was achieved when we relaxed this constraint and optimised all 20
parameters).

To fit the models we generated 240 s-long samples of presynaptic activity and optimized the

parameters of the models to minimize the squared error between the signal (v, the true average of

the stimulated presynaptic potentials, cf. Equation 5 with wi ¼
1
N) and their estimates (v̂, the outputs

of the models), averaged over the duration of the sample:

�estimation ¼
1

T

XT

t¼1

ðv̂t � vtÞ
2 (32)

After training, we tested the different models in cross-validation, on a novel 120 s-long input

sequence, and quantified their performance by the fraction of variance unexplained, i.e. the tempo-

rally averaged squared error, �estimation, normalized by the variance of the signal (as a sensible upper
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limit on the error – achievable by an estimator that predicts the prior mean, ignoring incoming spikes

altogether):

�estimation ¼
�estimation

Var½v�
(33)

where Var½v� ¼ 1
T�1

P

tðvt � E½v�Þ2 and E½v� ¼ 1
T

P

tvt. (Normalization was unnecessary during training

because the parameters of the models that we were optimizing obviously did not influence the vari-

ance of the signal.) Figure 4 shows 1� �estimation, i.e. the fraction of variance explained as ‘perfor-

mance’, and Figure 1—figure supplement 3, Figure 3—figure supplement 2, and Figure 4—

figure supplement 2 show �estimation as ‘estimation error’.

Fitting and predicting experimental data
To predict dendritic integration in hippocampal and neocortical neurons we fitted the parameters

describing presynaptic statistics in our model, PðuÞ and PðsjuÞ, to the statistical patterns in the activ-

ity of their respective presynaptic populations.

The basal dendrites of neocortical layer 2/3 pyramidal cells are targeted by neighbouring pyrami-

dal neurons as well as by neurons from layer 4 (Douglas and Martin, 2004). We used in vivo intracel-

lular paired recordings from layer 2/3 pyramidal neurons in the barrel cortex (Poulet and Petersen,

2008; Gentet et al., 2010; Crochet et al., 2011) to set the parameters of our model to reproduce

the salient features of the presynaptic population dynamics during quiet wakefulness (Tables 1–2).

In the hippocampal experiments we stimulated synapses on the proximal dendrites of CA3 neu-

rons targeted by recurrent collaterals of neighbouring pyramidal cells (Andersen et al., 2007). We

fitted the presynaptic statistics to in vivo population activity patterns recorded from the hippocam-

pus during quiet wakefulness, characterised by sharp wave (SPW) activity (Csicsvari et al., 2000). As

intracellular recordings from CA3 pyramidal neurons during SPW activity in the awake animal are not

available, we fitted the presynaptic statistics to awake extracellular data from CA3 (Csicsvari et al.,

2000; Grosmark et al., 2012) and intracellular (Ylinen et al., 1995; English et al., 2014) data from

CA1 pyramidal neurons (Tables 1 and 3).

Comparing the optimal response to dendritic integration
We used four different parameter sets (models) to describe the activity of the presynaptic population

(Figure 1). The parameters of the HP and NC models were fitted to in vivo recordings from the cor-

responding presynaptic populations as described above. As a control, we used two simpler models

with no state switching dynamics. The cor2 model had correlated membrane potential fluctuations

with all cross-correlations between presynaptic neurons being the same, � 1
N�1

� � � 1. Neurons in

the last model, ind, had independent membrane potential fluctuations. The HP, NC, and ind models

had no free parameters, while parameter � of the cor2 model was left free and later tuned to fit den-

dritic data. Note that to fit supralinear cortical responses, � had to be tuned to unnaturally large

negative values in this model (Figure 5—figure supplement 1A) – and it still produced significantly

poorer fits than the HP and NC models (Figure 5).

After setting the parameters of the presynaptic population, we computed the optimal response

by numerically integrating Equations 20–22 in the software package R (R Core Team, 2012;

Soetaert et al., 2010). When comparing the optimal response to experimental data, we assumed

that each uncaging event corresponded to a single spike at the presynaptic axon terminal, and

spines not showing measurable gluEPSP were considered to be non-stimulated. For all four presyn-

aptic parameter sets, we varied two postsynaptic parameters to fit the responses of the optimal esti-

mator to dendritic integration data, i.e. the somatic membrane potential traces recorded in our in

vitro experiments. These two parameters were the weight w of the presynaptic neurons and the

time constant of the postsynaptic filtering, tpost (Equation 5). To avoid overfitting, we assumed that

all presynaptic neurons had equal weight, i.e. 8 i wi ¼ w. A final free parameter that we had to con-

sider was the number of synapses that were in the same functional cluster as the synapses we stimu-

lated in our experiments – where the term ‘functional cluster’ refers to a set of synapses for which

the presynaptic cells are correlated. This parameter was irrelevant for the ind model (by definition),

it was fixed at 20 for the cor2 model (because its effects on the optimal response were largely indis-

tinguishable from that of varying �, see above), and it was tuned to fit dendritic integration for the
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state-switching models (NC and HP). In sum, the number of free parameters used to fit dendritic

integration data was 2 for the ind model and 3 for the cor2, NC, and HP models. We confirmed that

the higher number of free parameters in the latter models did not result in an unfair advantage in fit-

ting performance by using Bayesian Information Criterion (BIC), rather than squared error (see

below), as our measure of performance. BIC includes an explicit term penalizing the number of

parameters, and our results were not qualitatively affected by it: fitting the model using the relevant

in vivo statistics resulted in 3500�940 (NC, mean�s.d.) and 2000�1100 (HP) higher BIC scores than

when using independent statistics (where each unit of BIC difference corresponds to a likelihood

that is higher by a factor of e ’ 2:71).

We fitted each recorded neuron independently using these parameters by minimizing the mean

squared error between the predicted, ~v, and the recorded postsynaptic membrane potential (aver-

aged across repetitions of the same stimulation in the same cell), v�:

�fitting ¼
1

T

XT

t¼1

ð~vt � v�t Þ
2 (34)

To be able to compare results across different neurons and different stimulation protocols, we

normalized the error by the total variance of the data:

�fitting ¼
�fitting
Var½v��

(35)

where Var½v�� ¼ 1
T�1

P

tðv
�
t � E½v��Þ2 and E½v�� ¼ 1

T

P

tv
�
t . A natural lower bound of our fitting error

was the intrinsic variability of the data, so we computed the mean of the variance of the experimen-

tal data across repetitions, normalized by the total variance of the data:

�min ¼
1

L�1

PL
l¼1

1
T

P

tðv
�
t;l � v�t Þ

2

Var½v��
(36)

where v�t;l is the raw data before averaging across repetitions, L is the number of repetitions using

the same stimulation protocol in the same cell and v�t ¼
1
L

P

L v
�
t;l. Figures 5D,H and Figure 5—fig-

ure supplement 1G show �fitting as the ‘fitting error’ and �min as ‘var’. The best fitting parameter val-

ues for the postsynaptic time constant, tpost, and total number of neurons in a functional cluster, N,

are shown in Figure 5—figure supplement 1B,C.

Experimental methods
Neocortex
Slice preparation and electrophysiology
Acute sagittal brain slices (300 mm) incorporating both visual and somatosensory cortex were pre-

pared from 3–6 week-old Sprague-Dawley rats as previously described (Sjöström and Häusser,

2006) and in accordance with institutional and national guidelines. Experiments were carried out at

32˚C–35˚C in artificial cerebrospinal fluid (ACSF) containing (in mM): NaCl 125, KCl 2.5, glucose 25,

NaH2PO4 1.25, NaHCO3 25, MgCl2 1, CaCl2 2 (pH 7.3 when bubbled with 95% O2 and 5% CO2).

Somatic whole-cell recordings were obtained with a Multiclamp 700B amplifier (Molecular Devices,

Sunnyvale, CA), and data was acquired at 50 kHz using custom-written software in Matlab 7.2 (Math-

works, Natick, MA) interfacing with an ITC-18 A/D board (Instrutech, Holliston, MA). Patch pipettes

had a resistance of 3–6 M
 when filled with a solution containing (in mM): KMeSO4 130, HEPES 10,

KCl 7, MgATP 2, Na2ATP 2, Na2GTP 0.3, EGTA 0.05 (pH 7.2) and Rseries was <30 M
. For visualiza-

tion of cell morphology Alexa Fluor 594 (100 mM; Invitrogen, Carlsbad, CA) was added to the inter-

nal solution.

Two-Photon imaging and uncaging
Simultaneous 2-photon imaging and uncaging was performed using a dual galvanometer-based

scanning system (Prairie Technologies, Middleton, WI) using two Ti:sapphire pulsed lasers (MaiTai,

Spectra-Physics, Santa Clara, CA), one tuned to 840 nm for imaging cell morphology, and another

tuned to 720 nm for photolysis of MNI-caged-L-glutamate. Neurons were visualized using an Olym-

pus BX51WI objective (60x, 0.9 NA; Olympus, Melville, NY). Two-photon glutamate uncaging was
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carried out based on previously published methods (Gasparini and Magee, 2006; Losonczy and

Magee, 2006; Branco and Häusser, 2011). MNI-caged-L-glutamate (12 mM, Tocris Cookson, UK)

was dissolved in (in mM): NaCl 125, KCl 2.5, HEPES 10, CaCl2 2, MgCl2 1, glucose 25, and puffed

locally. To block NMDA receptors (Figure 5E,J, blue squares), 500 mM D-AP5 was included in the

glutamate puffing pipette.

Stimulation and data analysis
A short burst of presynaptic uncaging events equally spaced in time with inter stimulus interval (ISI)

between 1 and 20 ms was applied on 1–7 visually identified dendritic spines. For each dendritic

branch either the number of stimuli or the ISI was varied. Uncaging exposure time was 100–500 ms

and the inter-trial interval was 10 s. All data was acquired using custom written software in Matlab

7.2 (Mathworks). The original data recorded at 50 kHz were averaged across identical trials, filtered

with a Gaussian kernel with s ¼ 0:2 ms and subsampled at 2 kHz for analyses. All spines were

responsive in the neocortical experiments.

Hippocampus
Slice preparation and electrophysiology
Adult male Sprague-Dawley rats (8–12 week-old) were used to prepare transverse slices (400 �m)

from the hippocampus similarly to that described previously (Losonczy and Magee, 2006), accord-

ing to methods approved by the Janelia Farm Institutional Animal Care and Use Committee and the

Animal Care and Use Committee (ACUC) of the Institute of Experimental Medicine, Hungarian Acad-

emy of Sciences, and in accordance with 86/609/EEC/2 and DIRECTIVE 2010/63/EU Directives of the

EU. Experiments were carried out at 33˚C–35˚C in artificial cerebrospinal fluid (ACSF) containing (in

mM): NaCl 125, KCl 3, glucose 25, NaH2PO4 1.25, NaHCO3 25, MgCl2 1, CaCl2 1.3, Na-pyruvate 3,

and ascorbic acid 1 saturated with 95% O2 and 5% CO2. Somatic whole-cell recordings were

obtained with BVC-700 amplifier (Dagan, Minneapolis, MN) in the active ‘bridge’ mode, filtered at

3 kHz and data was acquired at 50 kHz. Patch pipettes had a resistance of 2–6 M
 when filled with

a solution containing (in mM): K-gluconate 120, KCl 20, HEPES 10, NaCl 4, Mg2ATP 4, Tris2GTP 0.3,

phosphocreatine 14, complemented with 100 �M Alexa Fluor 488 (Invitrogen-Molecular Probes,

Eugene, OR) and ~0.1–0.3% biocytin (Sigma), pH=7.25 and Rseries was <30 M
. Alexa Fluor 488 fluo-

rescence or biocytin labeling with immunoperoxidase reaction was used for post hoc verification of

the localization of neurons along the proximodistal axis of CA3. All CA3 neurons included in this

study had resting membrane potentials between �62 and �72 mV. Cells were hyperpolarized when

necessary to avoid action potential firing during synaptic stimulation.

Two-Photon imaging and uncaging
A dual galvanometer based two photon scanning system (Prairie Technologies, Middleton, WI)

equipped with an Olympus BX-61 microscope (60X, 0.9 NA objective) was used to image Alexa 488-

loaded neurons and to uncage glutamate at individual dendritic spines as described (Losonczy and

Magee, 2006; Makara and Magee, 2013). Two ultrafast pulsed laser beams (Chameleon Ultra II;

Coherent, Auburn, CA, USA) were used, one at 920 nm for imaging Alexa 488 and the other at

720 nm to photolyze MNI-caged-L-glutamate (Tocris Cookson, Ballwin, MO, USA; 10 mM applied

through a pipette above the slice). Laser beam intensity was independently controlled with electro-

optical modulators (Model 350–50, Conoptics, Danbury, CT, USA). Unitary gluEPSP amplitude and

rise time was close to that of mEPSPs as measured by sucrose application at dendritic segments 70–

168 �m from the soma as described before (Magee and Cook, 2000; Makara and Magee, 2013).

To standardize these experiments, results were included in the analysis only if 1) at least 65% of the

selected spines were responsive (see below), 2) the average amplitude of the successful unitary

gluEPSPs was 0.2–0.6 mV and maximum unitary gluEPSP amplitude was � 1:2 mV, 3) at least 5 mV

expected amplitude was achieved, and 4) unitary responses were stabile with repeated stimulation.

To block NMDA receptors 50 �M AP5 was added to both bath solution and the puffing pipette

solution.

Stimulation and data analysis
Dendritic branches on basal dendritic segments 100–160 �m from the soma were stimulated by syn-

chronous uncaging of MNI-glutamate at a spatially clustered set (1–32) of visually identified spines
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using 0.2 ms uncaging duration with different intervals (in the range of 0.1–5 ms) between synapses.

For each dendritic branch either the number of stimuli (control) or the ISI (NMDA block) was varied.

To detect non-responsive spines, we fitted the individual responses with a double-exponential

function:

fðtÞ ¼f0

�

e�ðt�t0Þ=t1 � e�ðt�t0Þ=t2
�

(37)

Spines were classified as non-responsive if the rise time of the gluEPSP (t2) was slower than 15 ms

or its start time (t0) was more than 5 ms (relative to the stimulation time). The original data recorded

at 50 kHz were averaged across identical trials, filtered with a Gaussian kernel with s ¼ 0:2 ms and

subsampled at 2 kHz for analyses.
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Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves. Neuron 82:908–
924. doi: 10.1016/j.neuron.2014.04.004
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Haider B, Häusser M, Carandini M. 2013. Inhibition dominates sensory responses in the awake cortex. Nature
493:97–100. doi: 10.1038/nature11665
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Isomura Y, Sirota A, Özen S, Montgomery S, Mizuseki K, Henze DA, Buzsáki G. 2006. Integration and
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Appendix

A Derivation of the optimal response
Here we derive the filtering equations for the switching multivariate OU (mOU) process

introduced in the main text, such that we generalise the two-state model presented there to

an arbitrary number of hidden states.

A.1 The generative model of presynaptic activities
The generative model of presynaptic activities has two hidden and one visible layers (Figure 2—

figure supplement 1). The state of the system is described by a global discrete state variable,

z, and its dynamics is characterised by the state transition matrix, 
:

Pðzt ¼ zjzt�dt ¼ z0Þ ¼
4
dzz0ð1� dt
z0Þþ ð1� dzz0Þdt
zz0 (A1)

where 
zz0 is the rate of transitioning from state z0 to z, and


z0 ¼
X

z 6¼z0


zz0 ; 
zz0 � 0; dt�
1

max
z0


z0

and dzz0 is the Kronecker delta function. This description becomes identical to the state

switching dynamics presented in the main text in the case of a binary state variable,

z 2 f�;þg.

The dynamics of the membrane potentials u are modeled as a mOU process where the resting

potential, uðztÞ, the time constant of the neurons, tðztÞ, and the covariance of the process noise,

QðztÞ, may depend on the current state, zt:

Pðutjut�dt; ztÞ¼
4
N ut; 1�

dt

tðztÞ

� �

ut�dt þ
dt

tðztÞ
uðztÞ;dtQðztÞ

� �

(A2)

For simplicity, in the main text we assumed that only the resting potential depends on the

state variable.

The observations are spike counts, s, which are given by an inhomogeneous Poisson process

for each neuron independently from the other neurons given its own membrane potential:

PðstjutÞ¼
4
Y

i

Poisson ðst;i; dt g e
b ut;iÞ (A3)

where g is the baseline firing rate and b is a parameter controlling the nonlinearity of the

spiking.

A.2 The inference problem
Our goal is to infer the posterior distribution of the current membrane potentials based on the

spiking pattern observed up to time t:

Pðutjs0:tÞ ¼
X

zt

Pðutjzt; s0:tÞ Pðztjs0:tÞ (A4)

¼
X

zt

Pðut; ztjs0:tÞ (A5)
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Inference of the value of the hidden variables requires information from two different sources:

the likelihood of emitting a particular spiking pattern (observation) and the dynamics of the

hidden variables combined with the previous estimate (innovation).

Pðut ¼ u; zt ¼ zjs0:tÞ /Pðst ¼ sjut ¼ uÞ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

fsðdt;uÞ:observation

� (A6)

�
X

z0

Pðzt ¼ zjzt�dt ¼ z0Þ Pðzt�dt ¼ z0js0:t�dtÞ�

�

ð

du0 Pðut ¼ ujut�dt ¼ u0; zt ¼ zÞ Pðut�dt ¼ u0jzt�dt ¼ z0; s0:t�dtÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hðdt;u;zÞ¼Pðut¼u;zt¼zjs0:t�dtÞ: innovation

where the likelihood PðstjutÞ is defined by Equation A3, the dynamics of the global state

variable P ðztjzt�dtÞ is defined by Equation A1 and the state-dependent membrane potential

dynamics P ðut ¼ ujut�dt ¼ u
0
; zt ¼ zÞ is given by Equation A2. Equation A6 is the filtering

equation, analogous to Equation 15 in the main text. Note that both the observation fsðdt;uÞ

and the innovation hðdt;u; zÞ terms depend on dt, the time step used in the inference.

In general, computing Equation A6 is intractable so we take an assumed density filtering

approach in which we approximate the posterior in each time step with a particular parametric

form and derive how the parameters of this approximation change due to Equation A6.

Specifically, we represent the posterior using the following factorisation (without

approximation):

Pðut ¼ u; zt ¼ zjs0:tÞ ¼Pðzt ¼ zjs0:tÞ Pðut ¼ ujzt ¼ z;s0:tÞ (A7)

The first term of Equation A7 is the posterior over the current value of the discrete hidden

state variable, zt, which is a discrete distribution that can be parametrised by a single (vector)

parameter, zt (still without approximation):

Pðzt ¼ zjs0:tÞ¼
4
z
ðzÞ
t (A8)

The second term of Equation A7 is the distribution of the membrane potentials conditioned

on the current state, which we approximate by a multivariate Gaussian with parameters �
ðzÞ
t

and S
ðzÞ
t respectively describing the conditional mean and covariance of the presynaptic

membrane potentials:

Pðut ¼ ujzt ¼ z;s0:tÞ’
4
Nðu;�

ðzÞ
t ;S

ðzÞ
t Þ (A9)

In sum, this approximate posterior has three sets of parameters that fully characterise it: zt,

�
ðzÞ
t , and S

ðzÞ
t . In Sections A.3-A.6 we derive the update dynamics for these parameters when

observing arbitrary spiking patterns.

For notational convenience, we also introduce a further quantity, which can be derived from

these parameters: the expected firing rate of the cells in each hidden state, either written as a

vector g
ðzÞ
t or as a diagonal matrix G

ðzÞ
t , whose elements are

g
ðzÞ
t;i ¼ G

ðzÞ
t;ii ¼

ð

Pðut;i ¼ ujzt ¼ z;s0:tÞ gebudu¼ geb�
ðzÞ
t;i þ

1
2
b2 S

ðzÞ
t;ii (A10)
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A.3 Parameter updates
The advantage of describing the elements of the posterior in a parametric form is that we only

need to update the parameters of Equations A8-A9. As the parameter updates are derived

using Equation A6, in which the innovation and the observation terms depended on dt, the

parameter updates will also depend on dt. Eventually, to derive continuous-time dynamics, we

will take the limit of dt�!0. Incidentally, the Gaussian approximation in Equation A9 is also

more accurate with small dt.

We rewrite the parameters of the approximate posterior by using auxiliary variables (this also

makes it explicit how the update rule depends on dt):

z
ðzÞ
t ðdtÞ ¼

astðdt; zÞ

bstðdtÞ
(A11)

�
ðzÞ
t ðdtÞ ¼

mstðdt; zÞ

astðdt; zÞ
(A12)

�
ðzÞ
t ðdtÞ ¼

Cstðdt; zÞ

astðdt; zÞ
(A13)

S
ðzÞ
t ðdtÞ ¼�

ðzÞ
t ðdtÞ��

ðzÞ
t ðdtÞ

�

�
ðzÞ
t ðdtÞ

�T

(A14)

where the auxiliaries are defined as:

asðdt; zÞ¼
4
ð

fsðdt;uÞ hðdt;u; zÞ du (A15)

bsðdtÞ¼
4
X

z

asðdt; zÞ (A16)

msðdt; zÞ¼
4
ð

ufsðdt;uÞ hðdt;u; zÞ du (A17)

Csðdt; zÞ¼
4
ð

uuTfsðdt;uÞ hðdt;u; zÞ du (A18)

where fsðdt;uÞ and hðdt;u; zÞ were defined in Equation A6.

A.4 First-order approximations to parameter updates
Our goal is to derive differential equations for the parameter updates. Therefore we will assume

that dt is sufficiently small (i.e. dt�!0) to use a first order approximation of Equations A11-

A13 around dt ¼ 0:

z
ðzÞ
t ðdtÞ ’ z

ðzÞ
t ð0Þþ dtz

0

tð0Þ ¼
astð0; zÞ

bstð0Þ
þ dt

a
0

st
ð0; zÞ bstð0Þ� astð0; zÞ b

0

st
ð0Þ

b2stð0Þ
(A19)

�
ðzÞ
t ðdtÞ ’ �

ðzÞ
t ð0Þþ dt�

0

t
ðzÞð0Þ ¼

mstð0; zÞ

astð0; zÞ
þ dt

m
0

st
ð0; zÞ astð0; zÞ�mstð0; zÞ a

0

st
ð0; zÞ

a2stð0; zÞ
(A20)
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�
ðzÞ
t ðdtÞ ¼�

ðzÞ
t ð0Þþ dt�

0 ðzÞ
t ð0Þ ¼

Cstð0; zÞ

astð0; zÞ
þ dt

C
0

st
ð0; zÞ astð0; zÞ�Cstð0; zÞ a

0

st
ð0; zÞ

a2stð0; zÞ
(A21)

where

a
0

sðdt; zÞ ¼

ð

f
0

sðdt;uÞ hðdt;u; zÞ du

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

aI

þ

ð

fsðdt;uÞ h
0

ðdt;u; zÞ du

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

aII

(A22)

b
0

sðdtÞ ¼
X

z

a
0

sðdt; zÞ (A23)

m0
sðdt; zÞ ¼

ð

uf
0

sðdt;uÞ hðdt;u; zÞ du

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

mI

þ

ð

ufsðdt;uÞ h
0

ðdt;u; zÞ du

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

mII

(A24)

C
0

sðdt; zÞ ¼

ð

uuTf
0

sðdt;uÞ hðdt;u; zÞ du

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

CI

þ

ð

uuTfsðdt;uÞ h
0

ðdt;u; zÞ du

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

CII

(A25)

In particular, in order to compute Equations A19-A21 we will need the value of hðdt;u; zÞ and

h
¢

ðdt;u; zÞ with dt ¼ 0 (see Section A.8.1):

hð0;u; zÞ ¼ z
ðzÞ
t�dt�Nðu;�

ðzÞ
t�dt; S

ðzÞ
t�dtÞ (A26)

h0ð0;u; zÞ ¼
X

z0

z
ðz0Þ
t�dt ð1� dzz0Þ
zz0 � dzz0
z0
� �

N u;�
ðz0Þ
t�dt; S

ðz0Þ
t�dt

� �

�

�
1

2
z
ðzÞ
t�dtN u;�

ðzÞ
t�dt; S

ðzÞ
t�dt

� �

�

�½Tr½ SðzÞ �1
t�dt QðzÞþ

2

tðzÞ
I�þ 2

tðzÞ
u

ðzÞ

��
ðzÞ
t�dt

� �T

S
ðzÞ �1
t�dt u��

ðzÞ
t�dt

� �

�

� u��
ðzÞ
t�dt

� �T
S
ðzÞ �1
t�dt QðzÞ�

2

tðzÞ
S
ðzÞ
t�dt

0

@

1

A S
ðzÞ �1
t�dt u��

ðzÞ
t�dt

� ��

(A27)

Having derived the general form of the parameter updates we need to apply it to the possible

observations, i.e. derive how observing a particular presynaptic spiking pattern at time t

changes the posterior distribution over the state variable, Pðzt ¼ zjs0:tÞ and the presynaptic

membrane potentials, Pðut ¼ ujzt ¼ z; s0:tÞ. In the limit of dt�!0 we consider only two

alternative outcomes of the observation process: the case of observing zero or one spike in a

single time bin.

A.5 Observation: No spikes
We first calculate the likelihood (sec. A.5.1) and the auxiliaries (sec. A.5.2) with st ¼ 0 and then

derive the corresponding parameter updates in sec. A.5.3.

A.5.1 Likelihood

f0ðdt;uÞ ¼Pðst ¼ 0jut ¼ uÞ (A28)
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¼
Y

i

Poisson ð0; dt g eb uiÞ (A29)

¼ e�dtg
P

ie
b ui

(A30)

f0ðdt¼ 0;uÞ ¼ 1 (A31)

f
0

0ðdt;uÞ ¼� g
X

i

eb ui

 !

f0ðdt;uÞ (A32)

f
0

0ðdt¼ 0;uÞ ¼�g
X

i

eb ui (A33)

A.5.2 Auxiliaries

Here we describe the values of the auxiliaries required to compute Equations A19-A21 with

the likelihood function given above:

a0ð0; zÞ ¼ z
ðzÞ
t�dt (A34)

b0ð0Þ ¼ 1 (A35)

m0ð0; zÞ ¼ z
ðzÞ
t�dt�

ðzÞ
t�dt (A36)

C0ð0; zÞ ¼ z
ðzÞ
t�dtðS

ðzÞ
t�dt þ�

ðzÞ
t�dtð�

ðzÞ
t�dtÞ

TÞ (A37)

The following quantities have been derived in Ujfalussy et al., 2011:

aIð0; zÞ ¼�z
ðzÞ
t�dtg

ðzÞ
t�dt (A38)

mIð0; zÞ ¼�z
ðzÞ
t�dt½g

ðzÞ
t�dt�

ðzÞ
t�dt þbS

ðzÞ
t�dtg

ðzÞ
t�dt� (A39)

CIð0; zÞ ¼�z
ðzÞ
t�dt½g

ðzÞ
t�dtð�

ðzÞ
t�dtð�

ðzÞ
t�dtÞ

Tþ S
ðzÞ
t�dtÞþ 2b�

ðzÞ
t�dtðg

ðzÞ
t�dtÞ

T S
ðzÞ
t�dtþb2 S

ðzÞ
t�dtG

ðzÞ
t�dt S

ðzÞ
t�dt� (A40)

where g
ðzÞ
t ¼

P

i g
ðzÞ
t;i is the expected population firing rate in state z.

The derivation of the following auxiliaries is given in Section A.8.1:

aIIð0; zÞ ¼
X

z0

z
ðz0Þ
t�dt½ð1� dzz0Þ
zz0 � dzz0
z0 � (A41)

mII 0; zð Þ ¼
X

z0

z
ðz0Þ
t�dt½ð1� dzz0Þ
zz0 � dzz0
z0 ��

ðz0Þ
t�dt þ z

ðz0Þ
t�dt

u ðzÞ� �
ðzÞ
t�dt

tðzÞ
(A42)
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CIIð0; zÞ ¼
X

z0

z
ðz0Þ
t�dt ð1� dzz0Þ
zz0 � dzz0
z0
� �

�
ðz0Þ
t�dtð�

ðz0Þ
t�dtÞ

T þS
ðz0Þ
t�dt

� �

þ

þz
ðzÞ
t�dt½ðQðzÞ�

2

tðzÞ
S
ðzÞ
t�dtÞþ 1

tðzÞ
�
ðzÞ
t�dtðu

ðzÞ��
ðzÞ
t�dtÞ

Tþ

þ
1

tðzÞ
ðuðzÞ��

ðzÞ
t�dtÞð�

ðzÞ
t�dtÞ

T�
(A43)

A.5.3 Parameter updates

Now we are ready to substitute Equation A34-A43 into Equation A19-A21 to derive the

parameter updates.

State probabilities

z
ðzÞ
t ðdtÞ ¼

a0ð0; zÞ

b0ð0Þ
þ dt

a
0

0ð0; zÞ b0ð0Þ� a0ð0; zÞ b
0

0ð0Þ

b20ð0Þ

¼ z
ðzÞ
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(A44)

However, since 
z0 ¼
P

z00
z00z0 the last terms in Equation A44 cancel each other and we can

write that

z
ðzÞ
t ðdtÞ ¼ z

ðzÞ
t�dt þ dt½�z

ðzÞ
t�dtðg

ðzÞ
t�dt �hg t�dtiÞþ

X

z0

z
ðz

0
Þ

t�dt½ð1� dzz0 Þ
zz0 � dzz0
z0 �� (A45)

where h�i denotes averaging over z0, and so hg ti ¼
P

z0z
ðz0Þ
t�dt g

ðz0Þ
t is the average expected

population firing rate. In Equation A45 two different processes are changing the posterior

state probabilities. First, changes in zðzÞ are proportional to the difference between the total

firing rate in state z, g ðzÞ, and the average firing rate, hgi. This process causes a decay in the

posterior probability of those states in which the expected firing rate is high and thus

incompatible with the current observation (no spikes). Second, posterior state probabilities are

changing according to the prior state transition dynamics captured by 
.

Posterior mean
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(A46)

The evolution of the conditional mean is governed by three factors. The first term in the

bracket describes the decay of the posterior mean towards the prior mean with time constant

tðzÞ. The second term captures the effect of the observation (absence of spikes) where the

decrease in the posterior mean is proportional to the posterior covariance S
ðzÞ (because when

more uncertain a priori, the observation should have a larger impact) and the expected firing

rate gðzÞ (because a higher expected firing rate is more incompatible with the absence of

spikes and thus requires a larger correction). This term is omitted in the absence of

observations, i.e. during the absolute refractory period. Finally, the third term expresses the

effect of a possible transition from each of the other states z0 to state z which is proportional

to the product of the prior transition rate 
zz0 and the relative probabilities of the two states

(i.e. the relative proportion of the probability mass coming from state z
¢

against that already

existing in state z), and the difference between the respective posterior means (as the more

different these are, the larger the bias contributed by the probability mass coming from state

z
¢

is).

Posterior covariance
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(A47)

And finally, in order to compute the covariance, we will need:
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(A48)
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Now we substitute Equation A47-A48 into Equation A14 to obtain the linear form for the

change of the covariance matrix:
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(A49)

The evolution of the posterior covariance is governed by the same three factors as the

evolution of the conditional mean. The first is the decay of the posterior covariance towards

the prior covariance tðzÞ

2
QðzÞ with time constant tðzÞ

2
. (Note that this decay is twice faster than

that of the mean.) The second term captures the effect of the observation (absence of spikes)

such that the decrease in the posterior covariance is proportional to the square of the

covariance SðzÞ and the expected firing rate GðzÞ (because this observation is more informative,

i.e. it causes a larger surprise, when the expected firing rate is higher). Finally, the last term

expresses the effect of possible hidden transitions between state z and state z0 on the

posterior covariance (which is again proportional to the relative proportion of the probability

masses and the differences between the two states).

A.6 Observation: cell i emits a spike
Now we assume that cell i emits a spike while all other neurons remain silent in the current time

step. Note that as dt�!0 the probability of having multiple presynaptic neurons spiking in the

same time bin, or the same cell firing twice, converges to zero.

A.6.1 Likelihood

In this case the current spiking pattern is denoted by st ¼ ŝðiÞ, that is ŝ
ðiÞ
j ¼4 dij and the

likelihood is given by

fŝ ðiÞðdt;uÞ ¼ Pðst ¼ ŝðiÞjut ¼ uÞ

¼ Poissonð1;dt g eb uiÞ
Y

j 6¼i

Poissonð0;dt g eb ujÞ

¼ dt g eb ui �e

�dt g

X

j

eb uj

(A50)

f
ŝ ðiÞ

ðdt¼ 0;uÞ ¼ 0 (A51)

The derivative of the likelihood is
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(A52)

f
0

ŝ ðiÞ
ðdt¼ 0;uÞ ¼ g eb ui (A53)

In the following, we follow the same steps as in the previous section, but replacing f0ð0;uÞ and

f
¢

0ð0;uÞ with f
ŝ ðiÞ

ð0;uÞ and f
¢

ŝ ðiÞ
ð0;uÞ, respectively.

A.6.2 Auxiliaries

Again, the goal is to derive differential equations for the parameter updates. As the number of

time bins with spikes does not grow with dt�!0 we only need to compute terms up to zeroth

order (cf. Equations A19-A21). However, as the likelihood (Equation A51) is 0 when dt ¼ 0,

the values of the auxiliaries in Equations A54-A56 are also 0 (Equations A15-A18), and so we

shall use l’Hôpital’s rule to deal with the dt�!0 limit:

z
ðzÞ
t ðdtÞ ’ z

ðzÞ
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astð0; zÞ

bstð0Þ
¼
a

0
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ð0; zÞ
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(A54)
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(A55)

�
ðzÞ
t ðdtÞ¼�

ðzÞ
t ð0Þ ¼

Cstð0; zÞ

astð0; zÞ
¼
C

0

st
ð0; zÞ

a0

st
ð0; zÞ

(A56)

Substituting Equation A53 into Equations A22-A25 gives the following values for the

corresponding derivatives (for details see Ujfalussy et al., 2011):

a
0

ŝðiÞ
ð0; zÞ ¼ z

ðzÞ
t�dtg

ðzÞ
t�dt;i (A57)

b
0
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X
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z
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t�dtg
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t�dt;i (A58)

m
0
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C
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ðiÞÞTþ S
ðzÞ
t�dt� (A60)

A.6.3 Parameter updates

Finally, by substituting Equations A57-A60 back into Equations A54-A56, we can derive the

parameter updates in the case of observing a spike.

State probabilities
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(A61)

where hgt;ii ¼
P

z0z
ðz0Þ
t�dtg

ðz0Þ
t;i is the average (over states) expected firing rate of cell i.

Equation A61 shows that the posterior state probabilities change instantaneously after

observing a spike, and the change is proportional to the normalised difference between the

expected firing rate of cell i in state z and its state-averaged expected firing rate. Therefore if

state z is more compatible with the observed spiking pattern than state z0, i.e. g
ðzÞ
i > g

ðz0Þ
i , then

the posterior probability of being in state z, zðzÞ, will increase while zðz
0Þ will decrease.

Equation A61 can be rewritten into vector form as follows:

z
ðzÞ
t � z

ðzÞ
t�dt

dt
¼ z

ðzÞ
t�dt

st

dt
hGt�dti

�1ðg
ðzÞ
t�dt �hgt�dtiÞ

which in turn can be rewritten in differential equation form by taking the dt�!0 limit:

zðzÞ
:

¼ zðzÞsðtÞ hGi�1ðgðzÞ�hgiÞ (A62)

where sðtÞ ¼ limdt�!0 st=dt is the sum of Dirac-delta functions representing the presynaptic

spike trains.

Posterior mean

�
ðzÞ
t ðdt¼ 0Þ ¼

m
0

ŝðiÞ
ð0; zÞ

a
0

ŝðiÞ
ð0; zÞ

¼ �
ðzÞ
t�dtþb S

ðzÞ
t�dtst (A63)

Thus, the posterior conditional means of the presynaptic membrane potentials also change

instantaneously after observing a spike in the presynaptic population. The change is

proportional to the posterior variance in the case of the cell that emitted the spike while for

other presynaptic neurons the change is proportional to the posterior covariance between the

given cell and the neuron that emitted the spike. Note that, similar to the change in the

posterior state probabilities, the change of the mean is instantaneous and it does not depend

on the time step.

The differential equation form of Equation A63 reads as

�
ðzÞ
t ��

ðzÞ
t�dt

dt
¼ b S

ðzÞ
t�dt

st

dt

_�ðzÞ ¼ b S
ðzÞ
t�dtsðtÞ

(A64)

where sðtÞ is, again, the sum of Dirac-delta functions representing the presynaptic spike trains.

Posterior covariance
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S
ðzÞ
t ð0Þ¼ S

ðzÞ
t�dt (A66)
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Thus, Equation A66 indicates that the posterior covariance does not change directly after

observing a spike – only indirectly, through the increase in the posterior mean (Equation A63)

and thus G (Equation A10), which in turn decreases the covariance in the silent period

following the spike (Equation A49).

A.7 Differential equations
Here we summarize the results of Equations A45,A46,A49, and Equation A61-A66 as

differential equations in continuous time:

_z
ðzÞ

¼ �zðzÞðg ðzÞ�hgiÞþ zðzÞsðtÞThGi�1ðgðzÞ�hgiÞ
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X
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zðz
0
Þ½ð1� dzz0 Þ
zz0 � dzz0
z0 �

(A67)
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0
Þ��ðzÞÞT�

(A69)

Once again note that in the continuous time limit the presynaptic spike trains are represented

by the sum of Dirac-delta functions and we denote it with sðtÞ instead of st.

In the case of two states (þ and �), we can write Equation A67 as

_z
þ
¼�zþð1� zþÞðgþ �g�Þþ zþð1� zþÞ sðtÞThGi�1ðgþ �g�Þþ ð1� zþÞ 
þ� zþ
� (A70)

where we emphasise that the observation of either a spike or the absence of a spike causes

changes in the state probabilities that are proportional to their uncertainty, zþð1� zþÞ.

A.8 Derivations of auxiliaries
A.8.1 Derivation of Equations A26-A27

After substituting Equations A1-A2 and Equation A9 into Equation A6 we can derive the dt

dependence of the innovation term:
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hðdt;u; zÞ ¼ Pðut ¼ u; zt ¼ zjs0:t�dtÞ

¼
X

z0

Pðzt ¼ zjzt�dt ¼ z0Þ Pðzt�dt ¼ z0js0:t�dtÞ�

�

ð

du0Pðut ¼ ujut�dt ¼ u0; zt ¼ zÞ Pðut�dt ¼ u0jzt�dt ¼ z0;s0:t�dtÞ

¼
X

z0

z
ðz0Þ
t�dt½dzz0ð1� dt
z0Þþ ð1� dzz0Þdt
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�

ð
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@

1

A u0þ
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0

@
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ðz0Þ
t�dt;S

ðz0Þ
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uðzÞ

1�
dt

tðzÞ

;�
ðz0Þ
t�dt;

dt

1�
dt

tðzÞ

0

@

1

A

2
QðzÞþS

ðz0Þ
t�dt

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼
X

z0

z
ðz0Þ
t�dt½dzz0ð1� dt
z0Þþ ð1� dzz0Þdt
zz0 ��

�N u; 1�
dt

tðzÞ

0

@

1

A �
ðz0Þ
t�dtþ
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(A71)

Substituting dt ¼ 0 into Equation A71 yields Equation A26.

Next, we take the derivative of Equation A71 with respect to dt:

h
0
ðdt;u; zÞ ¼

X

z0

z
ðz

0
Þ

t�dt½ð1� dzz0 Þ
zz0 � dzz0
z0 ��

�N u; 1�
dt

tðzÞ

0

@

1

A �
ðz

0
Þ

t�dt þ
dt

tðzÞ
uðzÞ;dtQðzÞþ 1�

dt
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@

1

A
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S
ðz

0
Þ

t�dt
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@

1

Aþ

þz
ðz

0
Þ
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�½Nðu;�ðz
0
Þ

t�dtþ dt
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ðz
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t�dt

tðzÞ
; S

ðz
0
Þ

t�dt þ dtðQðzÞ�
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tðzÞ
S
ðz

0
Þ

t�dtÞþ dt2
S
ðz

0
Þ

t�dt

tðzÞ
2 Þ�

0

(A72)

where the derivative of the last term is provided below in general form.
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½Nðu;a0þ dta1;B0 þ dtB1 þ dt2B2Þ�
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(A73)

½Nðu;a0þ dta1;B0 þ dtB1 þ dt2B2Þ�
0

jdt¼0 ¼

¼�
1

2
Nðu;a0;B0Þ½TrðB

�1
0 B1Þ� 2aT1B

�1
0 ðu�a0Þ

� ðu�a0Þ
T
B�1

0 B1B
�1
0 ðu�a0Þ�

(A74)

Substituting dt ¼ 0 into Equation A72 after using Equation A74 to express its last term yields

Equation A27.

A.8.2 Derivation for Equations A41-A43

The above result can be used to compute terms appearing in the integrals of Equations A22-

A25 which are involved in computing Equations A41-A43

ð

½Nðu;a0 þ dta1;B0 þ dtB1þ dt2B2Þ�
0j dt¼0du¼

�
1

2

ð
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½TrðB�1

0 B1Þ�TrðB�1
0 B1B

�1
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(A75)

ð

u ½Nðu;a0 þ dta1;B0 þ dtB1 þ dt2B2Þ�
0

jdt¼0du¼

¼�
1

2

ð

Nðu;a0;B0Þu½TrðB
�1
0 B1Þ� 2aT1B

�1
0 ðu�a0Þ

�ðu�a0Þ
T
B�1

0 B1B
�1
0 ðu�a0Þ�du¼

(A76)
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¼a1 (A79)
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B The optimality of the sigmoidal nonlinearity
Neurons need to combine incoming spikes nonlinearly to perform efficient analog computations

based on digital spikes. In the main text, and the previous sections of this Appendix, we

derived the optimal way of combining incoming spikes (Equations 20-22), but the exact

implementation of this optimal nonlinear mapping within the dendritic tree is unrealistic. A

plausible alternative would be if each dendrite branch acted as a simple linear-nonlinear unit,

computing a nonlinear function of the linear combination of its linearly filtered input spike

trains (Poirazi et al., 2003), but it is unclear whether this could efficiently approximate the

optimal response, and if so then what is the specific functional form of the nonlinearity that is

able to make this approximation tight. In the main paper, we demonstrated that a sigmoidal

nonlinearity approximates the optimal response remarkably well if the dynamics of the

presynaptic population is dominated by simultaneous switching between a quiescent and an

active state. In this section we provide additional details for this derivation.

B.1 Simplified presynaptic dynamics
In the following derivations, for convenience, we assume that the weights of the linear

computation are roughly uniform and scale inversely with N, wi /
~ 1=N, although our

derivations also remain valid with other scalings of wi as long as the number of weights

significantly greater than 0 scales with N. We start by noting that the optimal response can

always be trivially rewritten as requiring the inference of the state, zðtÞ, and conditioned on the

state, the average presynaptic membrane potential directly, mðtÞ ¼
P

iwiuiðtÞ ¼ 1=N
P

iuiðtÞ

(instead of the individual membrane potentials, as in Equations 3 and 6):

v
~
ðtÞ ¼

X

z

P
�

zðtÞ ¼ zjsð0 : tÞ
� ð

P
�

mðtÞ ¼mjzðtÞ ¼ z;sð0 : tÞÞ m dm (A84)

¼
X

z

zðzÞðtÞ

ð

P
�

mðtÞ ¼mjzðtÞ ¼ z;sð0 : tÞÞ m dm (A85)

where, for simplicity, we took tpost ¼ 0, although it is not essential for our argument – which

instead applies to the total input when tpost 6¼ 0. Note that we do not generally use this

seemingly simpler form because the likelihood describing the spike generation process

(Equation 8) becomes more complex, and notably non-factorised, when conditioned on mðtÞ

instead of uðtÞ. Nevertheless, it is instructive to write down the prior over m (cf. Equation 7):

Pðmtjmt�dt; zt ¼ zÞ ¼N mt; 1�
dt

t

� �

mt�dt þ
dt

t
mðzÞ;dtq2

� �

(A86)

where mðzÞ ¼ 1
N

PN
i u

ðzÞ
i is the mean and q2 ¼ 1

N2

P

ij Qij is the process noise variance defined in

terms of the parameters of the original mOU process. In the following sections, we derive

simplified forms of inference, that can be readily related to dendritic processing, by taking

different limits to the original model, and in particular Equation A86.
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B.2 Sigmoidal nonlinearity with state switching dynamics
We start by assuming that the presynaptic neurons are equally variable and conditionally

independent given the population state (Qi;j ¼ q2dij). It is easy to see that in this case q2 ¼

q2=N and thus the prior variance of m (which is q2t=2, as can be seen from Equation A86) also

scales as 1=N. Thus, for a large presynaptic population, N�!¥, the prior variance of m

diminishes which means that the posterior inference is also greatly simplified because there is

no uncertainty any more about m given the population state, i.e.

P
�

mðtÞjzðtÞ ¼ z; sð0 : tÞ
�

¼ d
�

mðtÞ �mðzÞ
�

, and so the optimal response (Equations A85) for

two population states simplifies to

~vðtÞ ¼ zðtÞ mþ þ 1� zðtÞð Þm� (A87)

Although it seems that the only quantity that needs updating in Equation A87 is zðtÞ, in

general this still requires keeping track of the membrane potentials of individual presynaptic

neurons because the dynamics of zðtÞ (Equation 20) depends on the individual expected firing

rates (conditioned on each population state). Therefore, to allow further simplification, we

assume that all expected firing rates within a state are identical and constant, equal to their

prior value, i.e. gþ
i »g

þ ¼ gebu
þþ1

2
b2q2t=2, and so the population rate is simply gþ»Ngþ (with

corresponding definitions for g� and g�). With these assumptions the dynamics of the

posterior estimate of population state reduces to

z
_
¼
þ�ð
þþ
�Þ z
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

þ
gþ �g�

zgþ þð1� zÞ g�

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

BðzÞ

zð1� zÞ sðtÞ� ðgþ �g�Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

C

zð1� zÞ (A88)

As we do not track the membrane potential fluctuations of the individual neurons in this

reduced model, we also replaced the sðtÞ vector by the total spike train of the population,

sðtÞ ¼
P

i siðtÞ.

Amongst the parameters of Equation A88 only C scales with N, therefore the last term

dominates Equation A88 during silent periods. Conversely, the second term (involving B) will

dominate during spikes. Thus, the first term (involving A) can be ignored. Finally, we note that

BðzÞ ¼
1

zþ g�

gþ�g�

¼
1

zþ 1

ebðu
þ�u�Þ�1

(A89)

and therefore BðzÞ is nearly constant if the difference between gþ and g� is small (i.e.

b � In2
uþ�u�), in which case

B’ ebðu
þ�u�Þ � 1 (A90)

These considerations allow us to write the approximate form of Equation A88 as (cf.

Equation 27):

_z ¼ zð1� zÞ ½BsðtÞ�C� (A91)

Solving Equation A91 for zðtÞ is possible by noting that it is separable, and so the solution can

be written as

ð
1

zð1� zÞ
dz¼

ð

½BsðtÞ�C�dt (A92)

where solving the integral on the left yields
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In
z

1� z

� �

þ�¼

ð

½BsðtÞ�C�dt (A93)

In general, the value of � would need to be determined by solving the initial value problem,

but for simplicity and without loss of generality here we take � ¼ 0 and assume that nð0Þ has

the appropriate value to map to the required zð0Þ.

From Equation A93, z can be expressed as

z¼
1

1þ e
�

ð

½BsðtÞ�C�dt
(A95)

which in turn can be rewritten as

z¼
1

1þ e�n
(A96)

where we introduced the new variable n ¼
Ð
½BsðtÞ � C�dt whose definition can be equally

written as a differential equation:

n
_
¼BsðtÞ�C (A97)

The system defined by Equations A96-A97 has a form that is closely analogous to that of the

standard linear-nonlinear model of dendritic processing with a logistic sigmoid nonlinearity,

and is presented in the main text (Methods) as Equations 28-29.

B.3 Sublinear integration with second order correlations
We also considered another limiting case when the dynamics of the presynaptic population was

fully characterized by purely second-order correlations between the neurons. This means that

there is no state switching dynamics, so inference is simplified by taking z ¼ 1, but we also

cannot assume (as we did in the previous section) that the posterior correlations and thus the

posterior variance ofm vanishes in the largeN limit. Instead, we seek a formalism in which the

population activity ofN cells, represented by the variables fu; sg, is captured by the lower

dimensional dynamics of fm; sg (where sðtÞ ¼
P

i siðtÞ is still the ‘total’ input spike train, as

before). Under this simplified model, the prior dynamics ofm is as described by Equation A86,

and the likelihood is analogous to the one we had for individual neurons (Equation 8):

PðstjmtÞ ¼Poissonðst;dt rtÞ; with rt ¼ g eb ut (A98)

As the likelihoods of the two models can not be exactly matched, we chose the parameters b

and g to match the mean and the variance of the population firing rate. Thus, there is now a

single variable that characterizes the whole population, m, whose dynamics (both the prior

and likelihood) are analogous to those we had for a single membrane potential in the previous

model. Consequently, inference in this collapsed model requires the manipulation of only two

scalar variables – instead of the original OðN2Þ –, the posterior mean and variance of m, � and

s2 respectively, whose dynamics can be derived analogously to those obtained before for the

full population (Equations 21-22):

_� ¼
m��

t
þbs2

�

sðtÞ�g
�

(A99)

_s
2
¼ q2 �

2

t
s2 �b

2
s4g (A100)
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where, in line with previous notation, g ¼ geb�þ
1
2
b
2
s2

is the posterior mean estimate of the

average firing rate of the presynaptic population. (These equations only apply to the special

case when wi ¼ 1=N and Qij ¼ dijq þ ð1� dijÞ �q, but an extension to the more general case is

relatively straightforward.) We used this reduced model to infer the mean membrane potential

of the presynaptic population – which is relevant in the special case when wi ¼ 1=N and tpost ¼

0 (see above) so that ~v ¼ �. Figure 3—figure supplement 1A–C demonstrates that our

reduced model approximates the full model remarkably well provided that there are

substantial correlations in the presynaptic population.

Next, we noted that during inference the dynamics of the posterior variance is faster than the

dynamics of the posterior mean (Equations A99-A100) and therefore the posterior variance

can be approximated by its (mean-dependent) steady state value, s2
¥
ð�Þ. If we replace the

posterior variance in Equation A100 with its steady state value we obtain the following

approximate one-dimensional dynamics:

_� ’
m��

t
þbs2

¥
ð�Þ sðtÞ� geb�þ

1
2b

2
s2
¥
ð�Þ

� �

(A101)

As the optimal response to a single spike is proportional to the posterior variance, the

functional form of the steady state is highly informative about the nonlinearity of the

integration. Figure 3—figure supplement 1D shows that s2
¥
ð�Þ is a decreasing sigmoidal

function, thus responses to consecutive spikes will add sublinearly in this case, as each spike

increases �, which in turn reduces s2
¥
, which results in a smaller response for the next spike.

Expressing Equation A101 directly in the form of linear-nonlinear dynamics, as in the case of

switching dynamics, did not seem feasible, so we focussed instead on establishing a

correspondence only at the times of presynaptic spikes, when sðtÞ > 0. This required that there

exists an instantaneous mapping hðvlinÞ such that

� ¼ hðvlinÞ (A102)

where vlin is the linearly filtered and integrated inputs, whose dynamics vlin
_ is given by

Equation 24. Differentiating both sides of Equation A102 wrt. time, and substituting

Equation A101 and Equation 24, respectively, to each side yields

bs2
¥

�

hðvlinÞ
�

¼ h
0

ðvlinÞ B (A103)

after only keeping the dominating terms including sðtÞ on both sides and subsequently

simplifying by sðtÞ.

Although there was no closed-form analytical solution for hðvlinÞ from Equation A103, it could

be obtained by numerical integration (Figure 3—figure supplement 1E, blue line). It is clear

that the optimal mapping h is indeed sublinear in this case and it can be reasonably well

approximated using the concave half of the logistic sigmoid function derived above, for the

switching dynamics, even during silent periods (Figure 3—figure supplement 1E, red line

versus black dots; Figure 3). There is a simple intuition for the sublinearity implied by h

(following on from the intuition we gave for the sublinearity of the response after

Equation A101): according to Equation A103, its derivative is proportional to the steady

state posterior variance, which in turn is a non-negative monotonically decreasing function

(Figure 3—figure supplement 1D), and hence the final non-linearity must be monotonically

increasing and, importantly, concave – i.e. sublinear.
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