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The single dendritic branch as a
 fundamental functional unit
in the nervous system
Tiago Branco and Michael Häusser
The conventional view of dendritic function is that dendrites

collect synaptic input and deliver it to the soma. This view has

been challenged in recent years by new results demonstrating

that dendrites can act as independent processing and

signalling units, performing local computations that are then

broadcast to the rest of the neuron, or to other neurons via

dendritic transmitter and neuromodulator release. Here we

describe these findings and discuss the notion that the single

dendritic branch may represent a fundamental unit of signalling

in the mammalian nervous system. This view proposes that the

dendritic branch is a basic organizational unit for integrating

synaptic input, implementing synaptic and homeostatic

plasticity, and controlling local cellular processes such as

protein translation.
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Introduction
In his classic Histology of the Nervous System, Ramon y

Cajal asked ‘‘Why do dendritic trees even exist?’’ and

concluded that ‘‘Dendrites exist solely to allow the cell

to receive, and then transmit to the axon, the greatest

variety of information from the most diverse sources.’’ [1].

This pioneering notion of dendrites as receivers of synaptic

information was formalized as Cajal’s ‘law of dynamic

polarization’, postulating a unidirectional flow of infor-

mation within the neuron. This view has been extensively

characterized and has become widely established over the

years. Experimental and modeling work in a variety of

systems has provided strong evidence supporting the view

that a major function of dendrites is to collect information

from all connected input cells and transmit it to the site of

action potential generation. However, it is now becoming
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increasingly clear that on top of their role as input

receivers, dendrites orchestrate a variety of other processes

– electrical, biochemical and cellular – that are fundamen-

tal to neuron physiology and circuit function. Furthermore,

many of these processes seem to be highly compartmen-

talized at the level of individual dendritic branches, and the

‘variety of information’ alluded to by Cajal can already be

locally processed within a single dendrite. Here we review

recent work that supports the emerging notion that the

single dendritic branch represents a major signalling unit—

one that integrates electrical and chemical inputs, and can

send independent output signals to a variety of targets.

Local electrical integration: signalling to the
soma the result of a computation
Dendrites deliver electrical signals to thesoma, but they are

not just simple conductors of information. The passive and

active properties of the dendritic tree are crucial for deter-

mining how electrical signals propagate, and define their

compartmentalization and their interaction across different

dendritic regions. Passive properties alone can act as a

compartmentalizing force that acts in concert with the

morphology to create electrical compartments on the level

of dendritic branches, thanks to the strong attenuation of

voltage across dendritic branchpoints. On top of this, the

active properties of the dendrite can tune local signals

within a branch, either to amplify them or to dampen them,

with such non-linear processing again being kept local by

the unfavourable impedance matches at branchpoints.

Emblematic of this active local processing are dendritic

spikes—regenerative potentials initiated locally in dendri-

tic branches when input is sufficiently clustered in space

and time (see [2] for review). Such spikes, which appear to

be relatively ubiquitous across different cell types [2,3],

effectively computea threshold for the local spatiotemporal

distribution of synaptic input. Dendritic spikes can then

either be kept within the branch, by failure of active

propagation at the branchpoint, or they can spread regen-

eratively to the soma to influence axonal output (Figure 1a).

Thus, there exist both passive and active mechanisms for

branch-specific integration of synaptic input. What remains

unclear is what exactly is being computed with such mech-

anisms under physiological patterns of input, and what is

the functional role of such computations within specific

neuronal circuits. There has been substantial recent pro-

gress in exploring these issues both in vitro and in vivo.

First, the involvement of dendritic mechanisms in

elementary computations is supported by modeling

studies that propose a role for dendritic computation in
www.sciencedirect.com
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Figure 1

Different forms of functional compartmentalization in single dendritic branches.

Schematic representation of a simplified dendritic tree showing how single dendrites exhibit local integration and transmission of information on

different levels. (a) Electrical integration of synaptic inputs to a single branch is then passed on to the rest of the neuron. (b) Feedback signalling

restricted to a small cluster of spines. (c) Chemical signalling restricted to the neighbourhood of activated inputs along the branch. (d) Plasticity

signalling extending across the whole branch. (e) Signalling local protein synthesis in response to branch activation.
complex operations, such as feature detection in the

hippocampus [4] or detecting the order of input arrival

[5]. Recent experimental in vitro work has demonstrated

directly that single dendrites can carry out simple com-

putations, showing that the combination of local impe-

dance gradients and NMDA receptors allows dendrites to

discriminate multiple temporal input sequences [81��].
Experiments in hippocampal neurons have also revealed

that single dendrites can directly process the spatiotem-

poral relationship of excitation and inhibition [6]. That

computations may be implemented on the level of single

branches is further supported by the elegant work of Katz

et al. [7], who showed that in apical oblique dendrites of

CA1 pyramidal cells, excitatory synaptic strength

decreases towards the tip of the branch, which is consist-

ent with an optimization for local electrical integration

within dendritic branches.

Second, dendritic spikes have been suggested to be a

hallmark of local computations in dendrites [74,82].

Determining the conditions for their generation may

therefore tell us something about their functional role

in different circuits. A beautiful example illustrating the

importance of dendritic spikes in a neural circuit is

provided by the retina, where in directionally selective

retinal ganglion cells somatic spikes are primarily trig-

gered by locally generated dendritic sodium spikes,

which amplify the direction selectivity of the input [8].

Such a direct link between a behaviourally relevant

computation and local dendritic electrogenesis has been

more difficult to find elsewhere in the brain. Recently, in

CA1 pyramidal neurons, Takahashi and Magee [9]

showed that simultaneous burst stimulation of perforant

path and Schaffer collateral inputs generates large

NMDA-gated and voltage-gated Ca2+ channel-depend-

ent plateau potentials that are converted into action

potential bursts at the soma, suggesting that dendritic

spikes might be used to compare information carried by
www.sciencedirect.com
these two different inputs. A similar scenario was

described in basal dendrites of layer 5 pyramidal neurons,

where high frequency input delivered to a single branch

generates large NMDA spikes that lead to somatic burst

firing [10], the size of the NMDA spike decreasing with

distance from the soma due to dendritic filtering [11]. In

these neurons, NMDA-dependent regenerative poten-

tials have also been recently described in distal tuft

dendrites, where dual dendritic recordings have shown

that such events can be used to signal to the soma the

localized activation of feedback inputs from the thalamus

and other cortical regions [12], placing local dendritic

mechanisms in a network context.

Part of the problem in assigning a functional role to

dendritic spikes is that in order for them to be exploited

by neural circuits, the subcellular input distribution over

the dendritic tree and the relative timing of their acti-

vation during a behavioural task needs to meet the

conditions for dendritic spike generation. This can only

be studied in the intact brain, and new approaches for

measuring dendritic calcium signals in vivo are providing

information not only about the spatial localization of

synaptic input, but also about the engagement of den-

dritic mechanisms during sensory processing. Using a

microendoscope to image bulk dendritic activity in awake

and anesthetized rats, Murayama et al. [13,14�] provided

evidence consistent with the idea that sensory stimulation

of the hindlimb is represented by dendritic calcium

spikes in layer 5 pyramidal cells. However, to precisely

localize sensory-driven synaptic input it is necessary to

image individual dendritic branches in vivo, and several

groups have recently taken up this challenge. In the

cricket cercal system, Ogawa et al. [15] performed sim-

ultaneous presynaptic and postsynaptic calcium imaging

to reveal that interneuron dendrites can directly extract

the direction of air currents. Two recent studies in the

visual systems of Xenopus tadpoles [16��] and locust [17]
Current Opinion in Neurobiology 2010, 20:494–502
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indicate that in these circuits the subcellular topographi-

cal organization of sensory inputs favours dendritic com-

putations. Finally, in the mouse visual cortex Jia et al.
[18��] found dendritic NMDA-dependent calcium hot-

spots driven by visual stimulation, showing that local

dendritic non-linearities are engaged in vivo. While they

did not find a direct relationship between orientation

selectivity and the distribution of the dendritic calcium

transients, these signals were measured while hyperpolar-

izing the soma, which decreases the probability of trig-

gering dendritic spikes, and only a subset of all branches

could be imaged. Nevertheless, such experiments

represent a breakthrough in that they demonstrate that

it is possible to map sensory input on the dendritic tree of

a mammalian neuron, a prerequisite for understanding

how single dendrites compute information.

Local dendritic release of neurotransmitters
and neuromodulators—retrograde signalling
of postynaptic activity
The results of dendritic computations can be passed on to

the soma, where they are integrated to produce a pattern of

action potential firing and neurotransmitter release by the

axon, thus transmitting the local computations to other

partners in the network. However, even this output step

can be performed by dendritic branches alone, bypassing

the soma and axon. Dendrites can release either classical

neurotransmitters such as glutamate and GABA [19,20], as

well as neuromodulators like endocannabinoids and

BDNF [21] that can act in a retrograde manner and in

some cases activate autocrine receptors (Figure 1b). How

does dendritic release work, how local can it be and what is

it signalling to the presynaptic neuron?

Dendritic release of neurotransmitters is now well-estab-

lished and appears to be a primarily calcium-dependent

process that relies on vesicle exocytosis machinery.

Recent work supports this view, with postsynaptic

depolarization of Purkinje cells triggering SNARE-de-

pendent dendritic release of glutamate [22] that can

retrogradely activate presynaptic NMDARs in inter-

neurons to increase GABA release, as well as calcium-

dependent dopamine release that leads to autocrine

activation of mGluRs [23]. In substantia nigra dopamine

neurons, calcium release from intracellular stores facili-

tates dendritic dopamine release [24], a process that can

be regulated by stress hormones [25], and in the thalamus,

interneurons in the lateral geniculate nucleus can provide

feedforward inhibition to thalamo-cortical neurons via

dendritic GABA release that follows activation of den-

dritic L-type calcium channels and calcium spikes [26].

While most of the studies on dendritic release of neuro-

transmitter have characterized release following global

and widespread activation of the dendritic tree, the

dependence on voltage-gated calcium channels and

calcium entry suggests that neurotransmitter release
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can in some cases be highly compartmentalized. Den-

dritic spikes can be restricted to single branches [2], and

calcium diffusion can be even more limited [27], raising

the possibility that local dendritic integration might be

directly converted into a spatially confined output signal.

Interestingly, in the mammalian olfactory bulb, Castro

and Urban [28] have shown that subthreshold depolariz-

ations delivered to the soma of mitral/tufted cells are

capable of eliciting calcium transients and subsequent

dendritic glutamate release in the apical dendrite, imply-

ing that similar depolarization levels restricted to a subset

of the dendritic tree might achieve localized neurotrans-

mitter release. More recently, an elegant study by Grimes

et al. [29��] has provided evidence for subcompartmenta-

lization of transmitter release in dendrites of A17 ama-

crine cells in the retina (Figure 2b). These dendrites

provide direct feedback inhibition to rod bipolar cells,

and within a single branch, activation of L-type calcium

channels that supports GABA release is restricted to

�10 mm, allowing fast synapse-specific and independent

feedback, a process partially regulated by BK potassium

channels [30].

Apart from neurotransmitters, dendrites are also capable of

releasing a variety of neuromodulating substances. This

has been described in response to different types of stimuli

in almost every neuron type studied (see [21] for review),

and the list continues to grow. For example, Best and

Regehr have recently shown that dendrites of neurons

in the inferior olive have 5-HT receptors that respond to

endogenous serotonin by releasing endocannabinoids,

which in turn act retrogradely on presynaptic CB1 recep-

tors to decrease glutamate release probability [31]. Also, in

cultured hippocampal neurons, Matsuda et al. [32] used a

GFP-pHluorin fused with BDNF to directly visualize full

collapse of BDNF-containing dendritic vesicles in

response to action potential backpropagation, a phenom-

enon that appears to be calcium-dependent and able to

trigger phosphorylation of nCREB in nearby neurons [33].

Similarly to dendritic neurotransmitter release, most stu-

dies have not directly addressed the spatial regulation of

neuromodulator secretion. However, Branco et al. [34�]
showed that dendritic depolarization negatively regulates

presynaptic release probability, possibly via release of an

(unknown) retrograde neuromodulator, and that this regu-

lation is implemented at the level of single dendritic

branches, as evidenced by the resulting spatial distribution

of release probabilities over a dendritic tree. Thus, the

current data seem to suggest that dendritic release can

follow local integration and be spatially restricted, and that

in most cases it provides a form of local and input-specific

negative feedback regulation (see [35] for discussion).

Local chemical integration: biochemical
signalling within the branch
Synaptic input can initiate complex cellular events and be

effectively converted into and integrated as a biochemical
www.sciencedirect.com
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Figure 2

Examples of local functional compartments in single dendrites.

Experimental data illustrating the different forms of functional compartmentalization in dendrites. (a) Double dendritic recording in apical dendritic

branches of layer 5 pyramidal cells showing that NMDA spikes are restricted to the stimulated branch (from Ref. [12]). (b) Local synaptic stimulation

elicits a calcium transient in only the stimulated varicosity of an A17 amacrine cell dendrite, which leads to localized dendritic release of GABA (from

Ref. [29��]). (c) Fluorescence lifetime imaging of a Ras activity reporter reveals that potentiation of a single spine produces spread of Ras activation

along the dendritic branch (from Ref. [45�]). (d) Delivering a theta-burst protocol to individual branches of CA1 pyramidal neurons results in potentiation

of the coupling between the branch and the soma only in the stimulated branch (from Ref. [39��]). (e) In cultured hippocampal neurons, local protein

synthesis at the dendrite maintains and regulates the homeostatic scaling of surface GluR1 receptors (from Ref. [67]).
signal (Figure 1c). A classic hallmark of this process is

elevation of the local calcium concentration in the den-

drite, with calcium either entering directly via the stimu-

lated synapses or following activation of voltage-gated

calcium channels, or a number of other possible second

messenger pathways (see [27] for review). Calcium trig-

gers a wide range of biochemical cascades, and the extent

of its spatial spread depends on its source, the chemical

pathways activated, as well as local geometry and calcium

buffering [27]. Recent work has taken advantage of

techniques that permit high spatial resolution imaging

and synaptic activation, such as simultaneous 2-photon

calcium imaging and glutamate uncaging. While acti-

vation of single synapses in hippocampal pyramidal cells

has been shown to give rise to calcium signals via

NMDARs and VGCCs that can be restricted to the spine

head [36–38], it is also clear that spine calcium signals can

invade the dendritic shaft. One major source of calcium

entry and spread into dendrites is via VGCCs and

NMDARs following dendritic spikes [9,11,39��], which

due to the strong voltage attenuation at branchpoints

favours individual dendritic branches as a functional unit

for calcium signalling. This link between local dendritic

voltage and calcium elevation has been nicely demon-

strated in Purkinje cells using simultaneous calcium and

voltage-sensitive dye imaging [40]. Other sources of

calcium can give rise to signals that do not spread

throughout the entire dendritic branch, either because

they represent diffusion from a small source, or their

spread is actively restricted. In the hippocampus, spon-

taneous release from internal calcium stores in pyramidal
www.sciencedirect.com
cells diffuses up to 10 mm [41] and calcium entry follow-

ing mGluR5 activation in interneurons is limited to

�15 mm [42]. In A17 amacrine cells, synaptic stimulation

results in calcium transients that do not spread beyond

�10 mm due to the interaction between electrical propa-

gation in these dendrites and the threshold for VGCC

activation [29��]. Compartmentalized sensory-evoked

dendritic calcium signals have also been reported in

response to visual stimulation in vivo, in the Xenopus
tadpole [16��] and in the mouse visual cortex [18��].
NMDARs are involved in both cases, and while in the

former study this seems to result from activation of several

clustered synaptic inputs, in the latter the authors suggest

that this follows activation of single synapses (though no

direct evidence was provided to support this claim).

Other studies have analysed the compartmentalization of

biochemical signals other than calcium. Rose et al. [43]

used GFP-tagged CaMKII in cultured hippocampal

neurons to show that localized glutamate puffing induces

CaMKII translocation into dendritic spines, a process that

was often seen to spread over the whole dendritic tree.

Interestingly, CaMKII translocation requires NMDAR

and VGCCs activation, and in their conditions calcium

transients invaded all dendrites upon stimulation,

suggesting that if the calcium signal is more localized

as seen in other preparations, so will be CaMKII entry in

spines. Such highly local biochemical compartmentaliza-

tion has indeed been nicely demonstrated after LTP

induction at single spines, where CaMKII activation

was restricted to the stimulated sites [44]. Another
Current Opinion in Neurobiology 2010, 20:494–502
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beautiful example of compartmentalized chemical signal-

ling in dendritic branches comes from the work of Harvey

et al. [45�], who engineered a genetically encoded FRET

reporter of Ras GTPase activation, and used 2-photon

lifetime fluorescence imaging and glutamate uncaging to

reveal that calcium-dependent Ras activity diffuses

locally along the branch up to 10 mm (Figure 2c). Bio-

chemical signals can therefore spread from their site of

origin to influence the immediate neighbourhood, which

is typically limited to the activated branch. As it has been

suggested for LTP, for example [46], this is likely to

result in small segments of the dendritic tree having

similar properties, suggesting that they act as a basic

functional unit.

Local plasticity—storage of local computations
Given the compartmentalization of biochemical signals

within dendritic branches and their relationship with

synaptic plasticity (especially for calcium), it is expected

that single branches might also function as plasticity units

(Figure 1d). This would imply that dendrites could be

capable not only of performing individual computations,

but also of locally storing them. One form of plasticity that

was initially suggested to fulfil this prediction is plasticity

of dendritic excitability, a phenomenon first demon-

strated directly by Frick et al. [47] in CA1 pyramidal

neurons. In this study, changes were restricted to the

stimulated region, suggesting a local loop between excit-

ability and plasticity implementation [2]. The actual

restriction to single dendritic branches has now been

convincingly demonstrated by recent work from the

Magee lab. First, Losonczy et al. [39��] found that in

hippocampal pyramidal neurons, the coupling between

local dendritic sodium spikes and the soma is plastic, and

that this coupling can be changed in a branch-specific

manner by NMDA-dependent potassium channel regu-

lation (Figure 2d). A follow-up study by Makara et al. [48]

went a step further, and showed that this compartmenta-

lized potentiation of branch excitability is linked to

enriched environments, suggesting that it might play a

role in learning and memory. Albeit on a much shorter

time scale, Remy et al. [49] have also shown that the

refractoriness of local dendritic sodium spikes can influ-

ence dendritic excitability of individual branches, provid-

ing them with a history-dependence of activity. More

traditional forms of long-term plasticity in hippocampus

have also been suggested to benefit from local compart-

mentalized interactions in dendritic branches. While

LTP is usually considered to require backpropagation

of action potentials, Hardie and Spruston [50] have shown

that local synaptic depolarization as well as local dendritic

spikes is more effective in eliciting LTP of inputs that are

spatially close (see [51] for discussion). A similar scenario

was suggested by Branco et al. [34�] for homeostatic

plasticity, where release probability appears to be retro-

gradely controlled by local dendritic depolarization with

single branch specificity. The simultaneous operation of
Current Opinion in Neurobiology 2010, 20:494–502
Hebbian plasticity and homeostatic changes at the branch

level suggests that a single branch can exhibit the whole

repertoire of operations required to act as an independent

and stable plasticity unit (see [52] for discussion). More

evidence for branch regulation of synaptic strength comes

from elegant work in hippocampal neurons showing that

Homer-1a, a protein involved in late-phase plasticity,

enters spines only in dendritic branches that have been

activated [53]. Furthermore, the local balance between

inhibitory and excitatory inputs that has previously been

described [54] is maintained after LTP induction [55],

and dendrites that have been separated from the cell body

can still develop L-LTP [56]. As for calcium signalling,

plasticity induction can also have a more restricted spread

along dendritic branches, either directly linked to calcium

diffusion itself [40,42,46,57], or to secretion of regulating

factors [45,58].

Local translation in dendrites—changing local
dendritic structure and function
In the classical perspective, translation from mRNA to

proteins happens at the soma, and freshly synthesized

proteins are then shipped out to the appropriate locations

in the dendrites. However, over the past two decades it

has been shown that the entire translational machinery –
polyribosomes, enzymes and associated membranous cis-

terns – is also present in dendrites, and that mRNA can be

trafficked to dendrites. There is now very compelling

evidence that these dendritic mRNAs can be used for

local synthesis of the encoded proteins [59,60]. Such local

protein synthesis has been shown to be engaged by

synaptic stimuli, playing a key role in the durable synaptic

changes found during both long-term potentiation and

depression [61,62]. While one important consequence of

local translation is increased speed of protein delivery to

targets, another is the potential for conferring a high

degree of compartmentalization to protein production

and delivery. One means to achieve this would be via

targeted delivery of mRNAs, such that different dendritic

branches would have different mRNA populations. This

possibility is supported by the observation of differential

spatial distribution patterns for different mRNAs in Pur-

kinje cell dendrites [63], as well as by the fact that Arc
mRNA accumulation in dentate gyrus granule cells after

perforant path stimulation is restricted to the dendritic

region to which these inputs project [64–66]. Another

possibility is that the triggers of mRNA translation acti-

vation can be locally restricted. Given that changes in

synaptic strength and dendritic excitability can be

branch-specific and potentially depend on production

of new proteins, it is conceivable that the same proteins

are produced on-demand, at different rates in different

branches. In fact, given the apparent synapse-specificity

of some plasticity processes and the preferential localiz-

ation of ribosomes at the base of dendritic spines, a

popular hypothesis holds that this arrangement allows

for synapse-specific delivery of synaptic proteins [61],
www.sciencedirect.com
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though this will depend on how translation activators and

final products spread along the branch. Probably the most

compelling evidence to support region-specific trans-

lation in dendrites comes from the work of Sutton et al.
[67]. This study elegantly showed that the homeostatic

increase in GluR2-lacking AMPARs that occurs in

response to synaptic activity block is implemented via

increased protein synthesis, which is only evident in areas

of the dendrite exposed to NMDAR blockers (Figure 2e).

In addition, local translation in dendrites has been impli-

cated in the regulation of dendritic morphology, both

during development and during experience-dependent

changes [61]. In developing neurons of the optic tectum

in Xenopus tadpoles, Bestman and Cline [68] used 2-

photon in vivo imaging to show that mRNA granules

distributed throughout the developing dendritic tree

locally regulate branch dynamics, suggesting a model

where mRNA is released from the granules and changes

local levels of proteins involved in dendritic growth.

Similarly, in the Drosophila peripheral nervous system,

the presence of a transcription repressor in developing

processes is essential to the regulation of dendritic

branching [69], and in hippocampal neurons, proteins

present in mRNA granules control dendritic outgrowth

during development as well as spine number in mature

neurons [70,71]. One interesting aspect of such local

control of dendritic growth is that a highly compartmen-

talized neuron will tend to grow in an even more com-

partmentalized way given that growth signals will

automatically be kept local [72]. While global coordina-

tion of dendrite growth might be necessary, the potential

for a positive feedback mechanism that locally directs
Figure 3

A new model of hierarchical parallel processing in dendritic trees.

(a) In the ‘point neuron’ representation, all inputs are integrated at the soma

threshold. (b) In the two-layer network representation [74], synaptic inputs are

of its local inputs and applies a local thresholding nonlinearity (e.g. a dendritic

soma, where the final decision to generate output is taken (red arrow, right)

local integration in dendritic subunits to also be expressed as local output.

subunits and between subunits and the soma. Figure modified from Ref. [76

www.sciencedirect.com
growth supports the view of dendritic branches as basic

subcellular units that can act independently of each other.

Conclusion
There is ample and growing evidence that dendritic

branches can act as fundamental units of neuronal signal-

ling. We have described how this argument is supported by

the compartmentalization of various forms of signalling in

dendrites – electrical, chemical, translational – on the scale

of single branches. Such compartmentalization can arise

simply by focal clustering of active synaptic input to the

dendritic tree—which is easily achievable experimentally,

but which has not yet been convincingly demonstrated

with physiological patterns of synaptic input in vivo.

Nevertheless, the physical structure of the dendritic tree

itself can help ensure this compartmentalization: since

electrical signals are attenuated at dendritic branchpoints,

this helps keep them local; and all other types of signalling

that flow from the original electrical signal will therefore

also be compartmentalized. It will now be crucial to

examine how these different levels and types of compart-

mentalization are engaged in the intact animal during

behaviour. Addressing this will require imaging methods

capable of resolving electrical, chemical and even transla-

tional events on the spatial scale of microns, in the awake

animal. Preliminary results have shown that dendrites can

be imaged in awake animals [73], suggesting that the

necessary technical obstacles will soon be surmounted.

What are the functional implications of the view that

the single dendritic branch is a fundamental unit of

processing? First, it provides a massive increase in the

computational power of the single neuron, which should
, with an output (red arrow) generated when somatic voltage crosses

integrated locally in dendritic subunits, each of which computes the sum

spike). The results of multiple dendritic subunits are then summed at the

. (c) Dendritic release of neurotransmitters and neuromodulators allows

Furthermore, there is bidirectional communication between individual

].

Current Opinion in Neurobiology 2010, 20:494–502
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be proportional to the number of independent processing

compartments it contains [74,75]. It important to note

however, that while this can provide advantages for many

computational tasks, some computations demand low

levels of voltage compartmentalization in the dendritic

tree, as recently demonstrated for computations relying

on interactions between oscillations in different dendrites

of the same neuron [78,79]. These tend to phase-lock after

a period of time that depends on the electrotonic structure

of the dendrites, suggesting that a single neuron might

alternate between local and global processing depending

on the integration timescale, and that different neurons

might be tuned to different spatial computation scales

[80�]. A second implication of the view of single branches

as individual processing units is that it provides another

challenge to Cajal’s law of dynamic polarization: since

dendrites can act as output structures, and can themselves

influence signalling and computations in neighbouring

dendrites (both further upstream from the soma as well

as downstream towards the soma), this provides further

evidence that flow of information can be bidirectional

within the single neuron. Third, the ability of single

branches to provide output signals via neurotransmitter/

modulator release means that a single neuron can acquire

the function of an entire network of simple units, providing

multiple parallel input–output compartments rather than

all computations only being expressed via a single axonal

output (see Figure 3; [76,77]). Fourth, these results blur the

classical distinction between dendrites and axons as receiv-

ing and transmitting elements (which is well-known to be

ambiguous in insect neurons), underlining the importance

of identifying the distinct molecular identities and deter-

minants of these structures [20]. Finally, given that it is

synaptic input that both drives and harnesses the func-

tional specializations provided by each dendritic branch,

this highlights the need to understand how the spatial

organization of synaptic input to individual dendritic

branches is managed, and how local homeostasis between

excitatory and inhibitory synaptic inputs is achieved. The

prospect that each dendritic branch may have its own

unique ‘personality’, driven by and reflecting the special

functional properties of its particular collection of synaptic

inputs, should inspire anatomical and physiological work

on targeting of circuits to dendrites over the next decade.
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